cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A008307 Table T(n,k) giving number of permutations of [1..n] with order dividing k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 3, 2, 1, 1, 26, 9, 4, 1, 1, 1, 76, 21, 16, 1, 2, 1, 1, 232, 81, 56, 1, 6, 1, 1, 1, 764, 351, 256, 25, 18, 1, 2, 1, 1, 2620, 1233, 1072, 145, 66, 1, 4, 1, 1, 1, 9496, 5769, 6224, 505, 396, 1, 16, 3, 2, 1, 1, 35696, 31041, 33616, 1345, 2052, 1, 56, 9, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Solutions to x^k = 1 in Symm_n (the symmetric group of degree n).

Examples

			Array begins:
  1,   1,    1,    1,    1,     1,    1,     1, ...
  1,   2,    1,    2,    1,     2,    1,     2, ...
  1,   4,    3,    4,    1,     6,    1,     4, ...
  1,  10,    9,   16,    1,    18,    1,    16, ...
  1,  26,   21,   56,   25,    66,    1,    56, ...
  1,  76,   81,  256,  145,   396,    1,   256, ...
  1, 232,  351, 1072,  505,  2052,  721,  1072, ...
  1, 764, 1233, 6224, 1345, 12636, 5761, 11264, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
  • J. D. Dixon, B. Mortimer, Permutation Groups, Springer (1996), Exercise 1.2.13.

Crossrefs

Programs

  • Maple
    A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*A(n-j,k), j=numtheory[divisors](k))))
        end:
    seq(seq(A(1+d-k, k), k=1..d), d=1..12); # Alois P. Heinz, Feb 14 2013
    # alternative
    A008307 := proc(n,m)
        local x,d ;
        add(x^d/d, d=numtheory[divisors](m)) ;
        exp(%) ;
        coeftayl(%,x=0,n) ;
        %*n! ;
    end proc:
    seq(seq(A008307(1+d-k,k),k=1..d),d=1..12) ; # R. J. Mathar, Apr 30 2017
  • Mathematica
    t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = Sum[(n!/(n - d + 1)!)*t[n - d, k], {d, Divisors[k]}]; t[, ] = 1; Flatten[ Table[ t[n - k, k], {n, 0, 12}, {k, 1, n}]] (* Jean-François Alcover, Dec 12 2011, after given formula *)

Formula

T(n+1,k) = Sum_{d|k} (n)_(d-1)*T(n-d+1,k), where (n)_i = n!/(n - i)! = n*(n - 1)*(n - 2)*...*(n - i + 1) is the falling factorial.
E.g.f. for n-th row: Sum_{n>=0} T(n,k)*t^n/n! = exp(Sum_{d|k} t^d/d).

Extensions

More terms from Vladeta Jovovic, Apr 13 2001

A005388 Number of degree-n permutations of order a power of 2.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 1914926104576, 29475151020032, 501759779405824, 6238907914387456, 120652091860975616, 1751735807564578816, 29062253310781161472, 398033706586943258624
Offset: 0

Views

Author

Keywords

Comments

Differs from A053503 first at n=32. - Alois P. Heinz, Feb 14 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    f:= func< x | Exp( (&+[x^(2^j)/2^j: j in [0..14]]) ) >;
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Nov 17 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..ilog2(n))))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    max = 23; CoefficientList[ Series[ Exp[ Sum[x^2^m/2^m, {m, 0, max}]], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Sep 10 2013 *)
  • SageMath
    def f(x): return exp(sum(x^(2^j)/2^j for j in range(15)))
    def A005388_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A005388_list(40) # G. C. Greubel, Nov 17 2022

Formula

E.g.f.: exp(Sum_{m>=0} x^(2^m)/2^m).
E.g.f.: 1/Product_{k>=1} (1 - x^(2*k-1))^(mu(2*k-1)/(2*k-1)), where mu() is the Moebius function. - Seiichi Manyama, Jul 06 2024

A326241 Number of degree-n even permutations of order dividing 12.

Original entry on oeis.org

1, 1, 1, 3, 12, 36, 216, 1296, 10368, 78912, 634896, 5572656, 51817536, 477672768, 8268884352, 101752505856, 1417554660096, 20985416983296, 344834432195328, 5096129755468032, 70148917686998016
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the a(3)=3 solutions are (1), (1, 2, 3), (1, 3, 2) (permutations in cyclic notation).
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Crossrefs

Programs

  • Maple
    E:= (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) + (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)):
    S:= series(E,x,31):
    seq(coeff(S,x,i)*i!,i=0..30);# Robert Israel, Jul 08 2019
  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^3/3 + x^4/4 + x^6/6 +x^12/12]+1/2 Exp[x - x^2/2 + x^3/3 - x^4/4 - x^6/6 - x^12/12], {x, 0, nn}], x]*Range[0, nn]!]

Formula

E.g.f.: (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) + (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)).

A326242 Number of degree-n odd permutations of order dividing 12.

Original entry on oeis.org

0, 0, 1, 3, 12, 60, 360, 2016, 11088, 73872, 602640, 4411440, 81677376, 934435008, 8100473472, 104370819840, 1448725616640, 15823660179456, 247231858514688, 3703908371910912, 66727356304757760, 1124506454958351360, 19305439846610835456
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the a(3)=3 solutions are (1, 2), (2, 3), (1, 3) (permutations in cyclic notation).
		

Crossrefs

Programs

  • Maple
    E:= (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) - (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)):
    S:= series(E,x,31):
    seq(coeff(S,x,i)*i!,i=0..30); # Robert Israel, Jul 08 2019
  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^3/3 + x^4/4 + x^6/6 +x^12/12]-1/2 Exp[x - x^2/2 + x^3/3 - x^4/4 - x^6/6 - x^12/12], {x, 0, nn}], x]*Range[0, nn]!]

Formula

E.g.f.: (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) - (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)).
Showing 1-4 of 4 results.