A005411 Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.
1, 1, 4, 25, 208, 2146, 26368, 375733, 6092032, 110769550, 2232792064, 49426061818, 1192151302144, 31123028996164, 874428204384256, 26308967412122125, 843984969276915712, 28757604639850111894, 1037239628039528906752, 39481325230750749160462
Offset: 0
Examples
G.f. = 1 + x + 4*x^2 + 25*x^3 + 208*x^4 + 2146*x^5 + 26368*x^6 + 375733*x^7 + ... [Deleted g.f. restored by _N. J. A. Sloane_, Jan 30 2016]
References
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Michael Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, arXiv:1703.00840 [hep-th], 2017.
- Rémi Bottinelli, Laura Ciobanu, and Alexander Kolpakov, Three-dimensional maps and subgroup growth, manuscripta math. (2021).
- L. Ciobanu and A. Kolpakov, Three-dimensional maps and subgroup growth, arXiv:1712.01418 [math.GR], 2017.
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949. DOI:10.1103/PhysRevD.18.1939
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 294.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Wikipedia, Feynman diagram
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x/y, 1) + b(x-1, y+1, true) )) end: a:= n-> b(2*n, 0, false): seq(a(n), n=0..20); # Alois P. Heinz, May 21 2015
-
Mathematica
a[n_] := Module[{A}, A[1] = 1; A[k_] := A[k] = (2*k-4)*A[k-1]+Sum[A[j]*A[k-j], {j, 1, k-1}]; A[n]]; Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Feb 27 2014, after Michael Somos *) a[ n_] := Module[{m = n + 1, u}, If[ n < 2, Boole[n >= 0], u = Range[m]; Do[ u[[k]] = (2 k - 4) u[[k - 1]] + Sum[ u[[j]] u[[k - j]], {j, k - 1}], {k, 2, m}]; u[[m]]]]; (* Michael Somos, Feb 27 2014 *) a[n_]:=SeriesCoefficient[(1-BesselK[1,-(1/(4 g^2))]/BesselK[0,-(1/(4 g^2))])/(2 g^2),{g,0,2*n}]; (* Robert Coquereaux, Sep 05 2014 *)
-
PARI
{a(n) = my(A); if( n<1, n==0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 4) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
Formula
From Peter Bala, Mar 07 2011: (Start)
Given the o.g.f. A(x), the function F(x) := A(x^2) satisfies the differential equation F(x) = 1 + x^3*d/dx(F(x)) + x^2*F(x)^2 (equation 3.53, P. Cvitanovic et al.).
Conjectural o.g.f. A(x) as a continued fraction:
1 + x/(1 - 4*x - 3^2*x^2/(1 - 8*x - 5^2*x^2/(1 - 12*x - 7^2*x^2/(1 - 16*x - ...)))).
Asymptotics: a(n) ~ 1/Pi*2^(n+1)*n!*(1 - 1/(2*n) - 3/(8*n^2)). (End)
Given u(1) = 1, u(n) = (2*n - 4) * u(n-1) + Sum_{k=1..n-1} u(k) * u(n-k) when n>1, then a(n) = u(n+1) if n>0. - Michael Somos, Jul 24 2011
G.f.: 1/Q(0) where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1/x^2 - 1/x - Q(0)/x^2, where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
G.f.: 1/x^2 - 1/x - G(0)/(2*x^2), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(2*k+1)/( x*(2*k+1) - 1/(1 - x*(2*k+3)/( x*(2*k+3) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
G.f.: G(0)/x -1/x, where G(k) = 1 - x*(2*k+1)/(x - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 21 2014
G.f.: 1/(2*x) - BesselK(1,-1/(4*x))/(2*x*BesselK(0,-1/(4*x))) where BesselK[p,z] denotes the modified Bessel function of the second kind (order p, argument z). This is a small improvement of a result obtained in 1980 book "Quantum Field Theory". - Robert Coquereaux, Sep 05 2014
Asymptotics: a(n) ~ 2*(2/Pi)^(1/2)*(2/e)^n*n^(n+1/2), cf. Ciobanu and Kolpakov in Links. - Sasha Kolpakov, Dec 11 2017
From Peter Bala, Jun 27 2022: (Start)
O.g.f. as a continued fraction of Stieltjes type: A(x) = 1/(1 - x/(1 - 3*x/(1 - 3*x/(1 - 5*x/(1 - 5*x/(1 - 7*x/(1 - 7*x/(1 - ...)))))))) follows by applying the result of Stokes to the Riccati differential equation 2*x^2*A'(x) = -1 + A(x) - x*A^2(x).
The even part of the continued fraction gives A(x) = 1/(1 - x - 3*x^2/(1 - 6*x - 15*x^2/(1 - 10*x - 35*x^2/(1 - 14*x - 63*x^2/(1 - 18*x - ... - (4*n^2-1)*x^2/(1 - (4*n+2)*x -...)))))), a continued fraction of Jacobi type (a J-fraction). (End)
Extensions
Name corrected by Charles R Greathouse IV, Jan 24 2014
Name clarified by Robert Coquereaux, Sep 05 2014
a(0)=1 prepended, programs and formulas edited by Alois P. Heinz, Jun 22 2015
Comments