cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005482 Decimal expansion of cube root of 7.

Original entry on oeis.org

1, 9, 1, 2, 9, 3, 1, 1, 8, 2, 7, 7, 2, 3, 8, 9, 1, 0, 1, 1, 9, 9, 1, 1, 6, 8, 3, 9, 5, 4, 8, 7, 6, 0, 2, 8, 2, 8, 6, 2, 4, 3, 9, 0, 5, 0, 3, 4, 5, 8, 7, 5, 7, 6, 6, 2, 1, 0, 6, 4, 7, 6, 4, 0, 4, 4, 7, 2, 3, 4, 2, 7, 6, 1, 7, 9, 2, 3, 0, 7, 5, 6, 0, 0, 7, 5, 2, 5, 4, 4, 1, 4, 7, 7, 2, 8, 5, 7, 0, 9, 9, 0, 4, 5, 4
Offset: 1

Views

Author

Keywords

Examples

			1.9129311827723891011991168...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005483 (continued fraction). - Harry J. Smith, May 07 2009

Programs

  • Mathematica
    RealDigits[N[7^(1/3), 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *)
  • PARI
    { default(realprecision, 20080); x=7^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005482.txt", n, " ", d)); } \\ Harry J. Smith, May 07 2009, corrected May 19 2009

Extensions

More terms from Olaf Voß, Feb 13 2008

A182630 T(n,k) = A002024(k+1)*n + A002262(k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 2, 2, 1, 3, 4, 3, 0, 4, 6, 5, 3, 1, 5, 8, 7, 6, 4, 2, 6, 10, 9, 9, 7, 5, 0, 7, 12, 11, 12, 10, 8, 4, 1, 8, 14, 13, 15, 13, 11, 8, 5, 2, 9, 16, 15, 18, 16, 14, 12, 9, 6, 3, 10, 18, 17, 21, 19, 17, 16, 13, 10, 7, 0
Offset: 0

Views

Author

Omar E. Pol, Dec 06 2010

Keywords

Comments

A table of congruences.
See A182631 for another version.

Examples

			Table of congruences:
===============+====+=======+==========+=============+====
           mod |  1 |   2   |     3    |      4      | ...
===============+====+=======+==========+=============+====
  congruent to |  0 |  0  1 |  0  1  2 |  0  1  2  3 | ...
===============+====+=======+==========+=============+====
Array begins:  |  0 |  0  1 |  0  1  2 |  0  1  2  3 | ...
               |  1 |  2  3 |  3  4  5 |  4  5  6  7 | ...
               |  2 |  4  5 |  6  7  8 |  8  9 10 11 | ...
               |  3 |  6  7 |  9 10 11 | 12 13 14 15 | ...
               |  4 |  8  9 | 12 13 14 | 16 17 18 19 | ...
               |  5 | 10 11 | 15 16 17 | 20 21 22 23 | ...
               |  6 | 12 13 | 18 19 20 | 24 25 26 27 | ...
               |  7 | 14 15 | 21 22 23 | 28 29 30 31 | ...
               |  8 | 16 17 | 24 25 26 | 32 33 34 35 | ...
               |  9 | 18 19 | 27 28 29 | 36 37 38 39 | ...
               | 10 | 20 21 | 30 31 32 | 40 41 42 43 | ...
		

Crossrefs

Programs

A005484 Numerators of continued fraction convergents to cube root of 7.

Original entry on oeis.org

1, 2, 21, 44, 725, 1494, 2219, 10370, 22959, 33329, 722868, 756197, 2991459, 15713492, 18704951, 53123394, 71828345, 124951739, 321731823, 3664001792, 18641740783, 22305742575, 85558968508, 107864711083, 301288390674, 8242651259281, 33271893427798, 41514544687079
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005482, A005483, A005485 (denominators).

Programs

  • Mathematica
    Numerator[Convergents[7^(1/3), 40]] (* Vincenzo Librandi, Sep 08 2013 *)
  • PARI
    a(n)= contfracpnqn(contfrac(7^(1/3), n))[1, 1]; \\ Michel Marcus, Sep 07 2013

Extensions

More terms from Michel Marcus, Sep 07 2013
Inserted a(27) by Vincenzo Librandi, Sep 08 2013
Offset changed by Andrew Howroyd, Jul 05 2024
Showing 1-3 of 3 results.