cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A169883 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_7^n.

Original entry on oeis.org

13, 64, 381, 2500, 17066, 118336, 825358, 5769604, 40366312, 282508864, 1977415678, 13841522500, 96889632947, 678224719936, 4747565867723, 33232942099204, 232630544491667, 1628413678617664, 11398895398904361, 79792266862562500, 558545865578002528, 3909821052537641536
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*7^(n/2))%7 != 0):
            return 7^n + 1 + floor(2*7^(n/2))
        else:
            return 7^n + floor(2*7^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 7^n + 1 + floor(2*7^(n/2)) if 7 does not divide floor(2*7^(n/2)), n is even, or n = 1. Otherwise a(n) = 7^n + floor(2*7^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A005525 Maximal number of rational points on a curve of genus 2 over GF(q), where q = A246655(n) is the n-th prime power > 1.

Original entry on oeis.org

6, 8, 10, 12, 16, 18, 20, 24, 26, 33, 32, 36, 42, 46, 48, 50, 52, 53, 60, 66, 68, 74, 78, 82, 90, 92, 97, 100, 104, 106, 114, 118, 120, 126, 136, 140, 144, 148, 150, 156, 166, 170, 172, 172, 176, 184, 186, 198, 200, 206, 214, 218, 222, 226, 232, 234, 246, 248, 252, 256, 268, 282
Offset: 1

Views

Author

Keywords

Comments

The successive values of q are 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, ... (see A246655).

Examples

			a(2) = 8 because 8 is the maximal number of rational points on a genus 2 curve over GF(3). One example of such a maximal curve is the genus 2 curve y^2 = x^6 + 2*x^2 + 1 which consists of the rational points (x,y) = (0, 1), (0, 2), (1, 1), (1, 2), (1, 1), (1, 2), and two points at infinity. - _Robin Visser_, Aug 03 2023
		

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. See N_q(2) on page 51.
  • J.-P. Serre, Oeuvres, vol. 3, pp. 658-663 and 664-669.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005523.

Programs

  • Sage
    for q in range(1, 1000):
        if Integer(q).is_prime_power():
            p = Integer(q).prime_factors()[0]
            if q==4: print(10)
            elif q==9: print(20)
            elif (Integer(q).is_square()): print(q + 1 + 4*sqrt(q))
            elif ((floor(2*sqrt(q))%p == 0) or (q-1).is_square()
                or (4*q-3).is_square() or (4*q-7).is_square()):
                if (frac(2*sqrt(q)) > ((sqrt(5)-1)/2)):  print(q + 2*floor(2*sqrt(q)))
                else:  print(q + 2*floor(2*sqrt(q)) - 1)
            else:  print(q + 1 + 2*floor(2*sqrt(q)))  # Robin Visser, Aug 03 2023

Formula

a(n) <= q + 1 + 4*sqrt(q) where q = A246655(n) [Hasse-Weil theorem]. - Robin Visser, Aug 03 2023
a(n) >= q - 1 + 2*floor(2*sqrt(q)) for all n except for 3 and 7, where q = A246655(n) [Serre]. - Robin Visser, Aug 03 2023

Extensions

More terms from Robin Visser, Aug 03 2023

A005524 Values k arising from a construction of Hirschfeld of k-arcs on elliptic curves over GF(q), where q = A246655(n) is the n-th prime power > 1.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 27, 28, 30, 32, 34, 37, 38, 40, 42, 44, 45, 48, 50, 51, 54, 58, 61, 62, 64, 65, 67, 72, 74, 75, 75, 77, 80, 81, 87, 88, 91, 94, 96, 98, 100, 103, 104, 109, 110, 113, 114, 120, 126, 129, 130, 132, 135, 136, 137, 141
Offset: 1

Views

Author

Keywords

Comments

Let E be an elliptic curve over GF(q). A k-arc on E is a set of k points in E(GF(q)) such that no three are collinear (in the projective plane over GF(q)). Hirschfeld showed that if the number #E(GF(q)) of GF(q)-rational points on E is even, then there exists a k-arc on E for k = #E(GF(q))/2. Here, a(n) denotes the largest possible k arising from this construction, hence a(n) = floor(A005523(n)/2). Note that a(n) is not necessarily the maximal k such that there exists a k-arc on an elliptic curve over GF(q); e.g. the elliptic curve y^2 = x^3 + x + 1 over GF(5) contains a 6-arc consisting of the points {(0,1), (3,1), (4,2), (4,3), (0,4), (3,4)}. - Robin Visser, Aug 26 2023

Examples

			For n = 4, the elliptic curve E : y^2 = x^3 + 3*x over GF(5) has 10 rational points.  As this is the maximal number of rational points an elliptic curve over GF(5) can have, this implies a(4) = 10/2 = 5. - _Robin Visser_, Aug 26 2023
		

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. See M_q(1) on page 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000961 (values of q), A005523, A365216.

Programs

  • Sage
    for q in range(1, 1000):
        if Integer(q).is_prime_power():
            p = Integer(q).prime_factors()[0]
            if (floor(2*sqrt(q))%p != 0) or (Integer(q).is_square()) or (q==p):
                print(floor((q + 1 + floor(2*sqrt(q)))/2))
            else:
                print(floor((q + floor(2*sqrt(q)))/2))  # Robin Visser, Aug 26 2023

Formula

a(n) = floor(A005523(n)/2) [Hirschfeld]. - Robin Visser, Aug 26 2023

Extensions

New name and more terms from Robin Visser, Aug 26 2023

A364681 a(n) is the number of isogeny classes of elliptic curves over GF(q), where q = A246655(n) is the n-th prime power > 1.

Original entry on oeis.org

5, 7, 9, 9, 11, 9, 13, 13, 15, 13, 17, 17, 19, 20, 17, 21, 23, 15, 25, 25, 27, 27, 27, 29, 31, 31, 21, 33, 33, 35, 35, 29, 37, 37, 39, 41, 41, 41, 41, 43, 45, 37, 45, 25, 45, 47, 47, 49, 49, 51, 51, 51, 50, 53, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 61, 61, 63, 45, 63, 37, 65, 65
Offset: 1

Views

Author

Robin Visser, Aug 02 2023

Keywords

Comments

Two elliptic curves over a finite field F_q are isogenous if and only if they have the same trace of Frobenius, or equivalently, have the same number of points over F_q.
Thus a(n) is the number of integers k such that there exists an elliptic curve over GF(q) with trace k, where q = A246655(n).

Examples

			For n = 1, the a(1) = 5 isogeny classes of elliptic curves over GF(2) are parametrized by the 5 possible values for the trace of Frobenius: -2, -1, 0, 1, 2.
For n = 2, the a(2) = 7 isogeny classes of elliptic curves over GF(3) are parametrized by the 7 possible values for the trace of Frobenius: -3, -2, -1, 0, 1, 2, 3.
		

Crossrefs

Programs

  • Sage
    for q in range(1, 1000):
        if Integer(q).is_prime_power():
            p, ans = Integer(q).prime_factors()[0], 0
            for a in range(-floor(2*sqrt(q)), floor(2*sqrt(q))+1):
                if (a%p != 0) or (Integer(q).is_square() and ((abs(a) == 2*sqrt(q))
                      or ((p%3 != 1) and (abs(a) == sqrt(q))) or ((p%4 != 1) and
                      (a==0)))) or ((not Integer(q).is_square()) and
                      (((p in [2,3]) and (abs(a) == sqrt(p*q))) or (a==0))):
                    ans += 1
            print(ans)

Formula

a(n) = 2*floor(2*sqrt(q)) + 1 if q is prime, where q = A246655(n).

A364690 Prime powers q such that there does not exist an elliptic curve E over GF(q) with cardinality q + 1 + floor(2*sqrt(q)).

Original entry on oeis.org

128, 2048, 2187, 16807, 32768, 131072, 524288, 1953125, 2097152, 8388608, 14348907, 48828125, 134217728, 536870912, 30517578125, 549755813888, 847288609443, 2199023255552, 19073486328125, 140737488355328, 562949953421312, 36028797018963968, 144115188075855872, 450283905890997363
Offset: 1

Views

Author

Robin Visser, Aug 02 2023

Keywords

Comments

By Hasse's theorem, every elliptic curve E over GF(q) has cardinality at most q + 1 + floor(2*sqrt(q)). Moreover, for every prime power q, there exists an elliptic curve E over GF(q) with cardinality at least q + floor(2*sqrt(q)). Thus these are the prime powers q for which A005523(n) = q + floor(2*sqrt(q)), where q = A246655(n).
By a theorem of Deuring and Waterhouse, these are exactly the prime powers q = p^k such that q is not prime, q is not a square, and p divides floor(2*sqrt(q)).

Examples

			The first few values of the sequence (factorized) are 2^7, 2^11, 3^7, 7^5, 2^15, 2^17, 2^19, 5^9, 2^21, 2^23, 3^15, 5^11, 2^27, 2^29, ...
		

Crossrefs

Subsequence of A246547.

Programs

  • Sage
    for q in range(1, 100000):
        if Integer(q).is_prime_power():
            p = Integer(q).prime_factors()[0]
            if (floor(2*sqrt(q))%p == 0) and (not Integer(q).is_square()) and (q != p):
                print(q)

A169872 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_2^n.

Original entry on oeis.org

5, 9, 14, 25, 44, 81, 150, 289, 558, 1089, 2138, 4225, 8374, 16641, 33130, 66049, 131796, 263169, 525736, 1050625, 2100048, 4198401, 8394400, 16785409, 33566018, 67125249, 134240898, 268468225, 536917252, 1073807361, 2147576330, 4295098369, 8590119956, 17180131329, 34360109096
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2^(n/2+1))%2 != 0):
            return 2^n + 1 + floor(2^(n/2+1))
        else:
            return 2^n + floor(2^(n/2+1))  # Robin Visser, Aug 17 2023

Formula

a(n) = 2^n + 1 + floor(2^(n/2 + 1)) if floor(2^(n/2 + 1)) is odd, n is even, or n = 1. Otherwise a(n) = 2^n + floor(2^(n/2 + 1)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169877 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_3^n.

Original entry on oeis.org

7, 16, 38, 100, 275, 784, 2280, 6724, 19964, 59536, 177989, 532900, 1596849, 4787344, 14356482, 43059844, 129162891, 387459856, 1162329651, 3486902500, 10460557755, 31381413904, 94143792483, 282430599364, 847290450408, 2541869016976, 7625603007884, 22876802020900, 68630393933574
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*3^(n/2))%3 != 0):
            return 3^n + 1 + floor(2*3^(n/2))
        else:
            return 3^n + floor(2*3^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 3^n + 1 + floor(2*3^(n/2)) if 3 does not divide floor(2*3^(n/2)), n is even, or n = 1. Otherwise a(n) = 3^n + floor(2*3^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169880 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_5^n.

Original entry on oeis.org

10, 36, 148, 676, 3237, 15876, 78685, 391876, 1955920, 9771876, 48842100, 244171876, 1220773003, 6103671876, 30517927510, 152588671876, 762941200054, 3814701171876, 19073495062765, 95367451171876, 476837201876328, 2384185888671876, 11920929173444139, 59604645263671876
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*5^(n/2))%5 != 0):
            return 5^n + 1 + floor(2*5^(n/2))
        else:
            return 5^n + floor(2*5^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 5^n + 1 + floor(2*5^(n/2)) if 5 does not divide floor(2*5^(n/2)), n is even, or n = 1. Otherwise a(n) = 5^n + floor(2*5^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023
Showing 1-8 of 8 results.