cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A169869 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus n over the field F_2.

Original entry on oeis.org

5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

A169872 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_2^n.

Original entry on oeis.org

5, 9, 14, 25, 44, 81, 150, 289, 558, 1089, 2138, 4225, 8374, 16641, 33130, 66049, 131796, 263169, 525736, 1050625, 2100048, 4198401, 8394400, 16785409, 33566018, 67125249, 134240898, 268468225, 536917252, 1073807361, 2147576330, 4295098369, 8590119956, 17180131329, 34360109096
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2^(n/2+1))%2 != 0):
            return 2^n + 1 + floor(2^(n/2+1))
        else:
            return 2^n + floor(2^(n/2+1))  # Robin Visser, Aug 17 2023

Formula

a(n) = 2^n + 1 + floor(2^(n/2 + 1)) if floor(2^(n/2 + 1)) is odd, n is even, or n = 1. Otherwise a(n) = 2^n + floor(2^(n/2 + 1)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169873 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_2^n.

Original entry on oeis.org

6, 10, 18, 33, 53, 97, 172, 321, 603, 1153, 2227, 4353, 8553, 16897, 33491, 66561, 132519, 264193, 527183, 1052673, 2102943, 4202497, 8400192, 16793601, 33577603, 67141633, 134264067, 268500993, 536963592, 1073872897, 2147669011, 4295229441, 8590305319, 17180393473, 34360479823
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if n==2: return 10
        elif (n%2 == 0): return 2^n + 1 + 2^(n/2+2)
        elif ((floor(2^(n/2+1))%2 == 0) or (2^n-1).is_square()
            or (4*2^n-3).is_square() or (4*2^n-7).is_square()):
            if (frac(2^(n/2+1)) > ((sqrt(5)-1)/2)): return 2^n + 2*floor(2^(n/2+1))
            else: return 2^n + 2*floor(2^(n/2+1)) - 1
        else: return 2^n + 1 + 2*floor(2^(n/2+1))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169877 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_3^n.

Original entry on oeis.org

7, 16, 38, 100, 275, 784, 2280, 6724, 19964, 59536, 177989, 532900, 1596849, 4787344, 14356482, 43059844, 129162891, 387459856, 1162329651, 3486902500, 10460557755, 31381413904, 94143792483, 282430599364, 847290450408, 2541869016976, 7625603007884, 22876802020900, 68630393933574
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*3^(n/2))%3 != 0):
            return 3^n + 1 + floor(2*3^(n/2))
        else:
            return 3^n + floor(2*3^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 3^n + 1 + floor(2*3^(n/2)) if 3 does not divide floor(2*3^(n/2)), n is even, or n = 1. Otherwise a(n) = 3^n + floor(2*3^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169878 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_3^n.

Original entry on oeis.org

8, 20, 48, 118, 306, 838, 2372, 6886, 20244, 60022, 178830, 534358, 1599374, 4791718, 14364057, 43072966, 129185618, 387499222, 1162397834, 3487020598, 10460762306, 31381768198, 94144406138, 282431662246, 847292291373, 2541872205622, 7625608530780, 22876811586838, 68630410502264
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if n==2: return 20
        elif (n%2 == 0): return 3^n + 1 + 4*3^(n/2)
        elif ((floor(2*3^(n/2))%3 == 0) or (3^n-1).is_square()
            or (4*3^n-3).is_square() or (4*3^n-7).is_square()):
            if (frac(2*3^(n/2)) > ((sqrt(5)-1)/2)): return 3^n + 2*floor(2*3^(n/2))
            else: return 3^n + 2*floor(2*3^(n/2)) - 1
        else: return 3^n + 1 + 2*floor(2*3^(n/2))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169880 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_5^n.

Original entry on oeis.org

10, 36, 148, 676, 3237, 15876, 78685, 391876, 1955920, 9771876, 48842100, 244171876, 1220773003, 6103671876, 30517927510, 152588671876, 762941200054, 3814701171876, 19073495062765, 95367451171876, 476837201876328, 2384185888671876, 11920929173444139, 59604645263671876
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*5^(n/2))%5 != 0):
            return 5^n + 1 + floor(2*5^(n/2))
        else:
            return 5^n + floor(2*5^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 5^n + 1 + floor(2*5^(n/2)) if 5 does not divide floor(2*5^(n/2)), n is even, or n = 1. Otherwise a(n) = 5^n + floor(2*5^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169881 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_5^n.

Original entry on oeis.org

12, 46, 170, 726, 3348, 16126, 79244, 393126, 1958714, 9778126, 48856074, 244203126, 1220842880, 6103828126, 30518276895, 152589453126, 762942946982, 3814705078126, 19073503797404, 95367470703126, 476837245549530, 2384185986328126, 11920929391810152, 59604645751953126, 298023226060613260
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if (n%2 == 0): return 5^n + 1 + 4*5^(n/2)
        elif ((floor(2*5^(n/2))%5 == 0) or (5^n-1).is_square()
            or (4*5^n-3).is_square() or (4*5^n-7).is_square()):
            if (frac(2*5^(n/2)) > ((sqrt(5)-1)/2)): return 5^n + 2*floor(2*5^(n/2))
            else: return 5^n + 2*floor(2*5^(n/2)) - 1
        else: return 5^n + 1 + 2*floor(2*5^(n/2))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169870 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus n over the field F_4.

Original entry on oeis.org

9, 10, 14, 15, 17, 20, 21
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

A169871 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus n over the field F_8.

Original entry on oeis.org

14, 18, 24, 25, 29
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

A169874 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 3 over the field F_2^n.

Original entry on oeis.org

7, 14, 24, 38, 64, 113, 192
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Showing 1-10 of 14 results. Next