cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A169883 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_7^n.

Original entry on oeis.org

13, 64, 381, 2500, 17066, 118336, 825358, 5769604, 40366312, 282508864, 1977415678, 13841522500, 96889632947, 678224719936, 4747565867723, 33232942099204, 232630544491667, 1628413678617664, 11398895398904361, 79792266862562500, 558545865578002528, 3909821052537641536
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*7^(n/2))%7 != 0):
            return 7^n + 1 + floor(2*7^(n/2))
        else:
            return 7^n + floor(2*7^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 7^n + 1 + floor(2*7^(n/2)) if 7 does not divide floor(2*7^(n/2)), n is even, or n = 1. Otherwise a(n) = 7^n + floor(2*7^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A096336 Spin(2n+1) and Spin(2n+2) have torsion index 2^a(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57
Offset: 0

Views

Author

Richard Borcherds (reb(AT)math.berkeley.edu), Jun 28 2004

Keywords

Comments

First several terms agree with A169869 but the two sequences are distinct as can be seen where the values are 19 and 20. - Skip Garibaldi, Mar 05 2017

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = Module[{e = Floor[Log2@n], b}, b = n - 2^e; n - Floor[Log2[(n + 1) n/2 + 1]] + Boole[2 b - a[b] <= e - 3]]; Table[a@ n, {n, 0, 120}] (* Michael De Vlieger, Mar 06 2017 *)
  • Python
    import numpy as np
    def a_typical(n):
        '''
        For most n, this is the value of a(n)
        '''
        return int(n - np.floor(np.log2( n*(n+1)/2 + 1)))
    def a(n):
        '''
        The torsion index of Spin_{2n+1} and Spin_{2n+2} is 2^a(n)
        Totaro denotes it by u(ell)
        '''
        if n >= 0 and n <= 18:   # Table 1 in Totaro's paper
            return [0,0,0,1,1,1,2,3,4,4,5,5,6,7,8,9,10,10,11][n];
        maxe = int(np.floor(np.log2(n)))
        for e in range(maxe+1):
            b = n - 2**e
            if 2*b - a(b) <= e - 3: # occurs for n = 8, 16, 32, 33, ...
                return a_typical(n)+1
        return a_typical(n)
    # Skip Garibaldi, Mar 05 2017

Formula

a(n) is usually n-floor(log_2((n+1)n/2 + 1)), but is this number plus 1 if n = 2^e+b for nonnegative integers e, b such that 2b-a(b) <= e-3.

Extensions

Edited and a(19)-a(49) added by Skip Garibaldi, Mar 05 2017
More terms from Michael De Vlieger, Mar 06 2017

A169872 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_2^n.

Original entry on oeis.org

5, 9, 14, 25, 44, 81, 150, 289, 558, 1089, 2138, 4225, 8374, 16641, 33130, 66049, 131796, 263169, 525736, 1050625, 2100048, 4198401, 8394400, 16785409, 33566018, 67125249, 134240898, 268468225, 536917252, 1073807361, 2147576330, 4295098369, 8590119956, 17180131329, 34360109096
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2^(n/2+1))%2 != 0):
            return 2^n + 1 + floor(2^(n/2+1))
        else:
            return 2^n + floor(2^(n/2+1))  # Robin Visser, Aug 17 2023

Formula

a(n) = 2^n + 1 + floor(2^(n/2 + 1)) if floor(2^(n/2 + 1)) is odd, n is even, or n = 1. Otherwise a(n) = 2^n + floor(2^(n/2 + 1)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169873 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_2^n.

Original entry on oeis.org

6, 10, 18, 33, 53, 97, 172, 321, 603, 1153, 2227, 4353, 8553, 16897, 33491, 66561, 132519, 264193, 527183, 1052673, 2102943, 4202497, 8400192, 16793601, 33577603, 67141633, 134264067, 268500993, 536963592, 1073872897, 2147669011, 4295229441, 8590305319, 17180393473, 34360479823
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if n==2: return 10
        elif (n%2 == 0): return 2^n + 1 + 2^(n/2+2)
        elif ((floor(2^(n/2+1))%2 == 0) or (2^n-1).is_square()
            or (4*2^n-3).is_square() or (4*2^n-7).is_square()):
            if (frac(2^(n/2+1)) > ((sqrt(5)-1)/2)): return 2^n + 2*floor(2^(n/2+1))
            else: return 2^n + 2*floor(2^(n/2+1)) - 1
        else: return 2^n + 1 + 2*floor(2^(n/2+1))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169877 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_3^n.

Original entry on oeis.org

7, 16, 38, 100, 275, 784, 2280, 6724, 19964, 59536, 177989, 532900, 1596849, 4787344, 14356482, 43059844, 129162891, 387459856, 1162329651, 3486902500, 10460557755, 31381413904, 94143792483, 282430599364, 847290450408, 2541869016976, 7625603007884, 22876802020900, 68630393933574
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*3^(n/2))%3 != 0):
            return 3^n + 1 + floor(2*3^(n/2))
        else:
            return 3^n + floor(2*3^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 3^n + 1 + floor(2*3^(n/2)) if 3 does not divide floor(2*3^(n/2)), n is even, or n = 1. Otherwise a(n) = 3^n + floor(2*3^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169878 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_3^n.

Original entry on oeis.org

8, 20, 48, 118, 306, 838, 2372, 6886, 20244, 60022, 178830, 534358, 1599374, 4791718, 14364057, 43072966, 129185618, 387499222, 1162397834, 3487020598, 10460762306, 31381768198, 94144406138, 282431662246, 847292291373, 2541872205622, 7625608530780, 22876811586838, 68630410502264
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if n==2: return 20
        elif (n%2 == 0): return 3^n + 1 + 4*3^(n/2)
        elif ((floor(2*3^(n/2))%3 == 0) or (3^n-1).is_square()
            or (4*3^n-3).is_square() or (4*3^n-7).is_square()):
            if (frac(2*3^(n/2)) > ((sqrt(5)-1)/2)): return 3^n + 2*floor(2*3^(n/2))
            else: return 3^n + 2*floor(2*3^(n/2)) - 1
        else: return 3^n + 1 + 2*floor(2*3^(n/2))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169880 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 1 over the field F_5^n.

Original entry on oeis.org

10, 36, 148, 676, 3237, 15876, 78685, 391876, 1955920, 9771876, 48842100, 244171876, 1220773003, 6103671876, 30517927510, 152588671876, 762941200054, 3814701171876, 19073495062765, 95367451171876, 476837201876328, 2384185888671876, 11920929173444139, 59604645263671876
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if (n==1) or (n%2 == 0) or (floor(2*5^(n/2))%5 != 0):
            return 5^n + 1 + floor(2*5^(n/2))
        else:
            return 5^n + floor(2*5^(n/2))  # Robin Visser, Aug 17 2023

Formula

a(n) = 5^n + 1 + floor(2*5^(n/2)) if 5 does not divide floor(2*5^(n/2)), n is even, or n = 1. Otherwise a(n) = 5^n + floor(2*5^(n/2)) [Deuring-Waterhouse]. - Robin Visser, Aug 17 2023

Extensions

More terms from Robin Visser, Aug 17 2023

A169881 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_5^n.

Original entry on oeis.org

12, 46, 170, 726, 3348, 16126, 79244, 393126, 1958714, 9778126, 48856074, 244203126, 1220842880, 6103828126, 30518276895, 152589453126, 762942946982, 3814705078126, 19073503797404, 95367470703126, 476837245549530, 2384185986328126, 11920929391810152, 59604645751953126, 298023226060613260
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if (n%2 == 0): return 5^n + 1 + 4*5^(n/2)
        elif ((floor(2*5^(n/2))%5 == 0) or (5^n-1).is_square()
            or (4*5^n-3).is_square() or (4*5^n-7).is_square()):
            if (frac(2*5^(n/2)) > ((sqrt(5)-1)/2)): return 5^n + 2*floor(2*5^(n/2))
            else: return 5^n + 2*floor(2*5^(n/2)) - 1
        else: return 5^n + 1 + 2*floor(2*5^(n/2))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169870 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus n over the field F_4.

Original entry on oeis.org

9, 10, 14, 15, 17, 20, 21
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

A169871 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus n over the field F_8.

Original entry on oeis.org

14, 18, 24, 25, 29
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

Crossrefs

Showing 1-10 of 15 results. Next