A005703 Number of n-node connected graphs with at most one cycle.
1, 1, 1, 2, 4, 8, 19, 44, 112, 287, 763, 2041, 5577, 15300, 42419, 118122, 330785, 929469, 2621272, 7411706, 21010378, 59682057, 169859257, 484234165, 1382567947, 3952860475, 11315775161, 32430737380, 93044797486, 267211342954, 768096496093, 2209772802169
Offset: 0
Examples
From _Gus Wiseman_, Feb 20 2024: (Start) Representatives of the a(0) = 1 through a(5) = 8 graphs: {} . {12} {12,13} {12,13,14} {12,13,14,15} {12,13,23} {12,13,24} {12,13,14,25} {12,13,14,23} {12,13,24,35} {12,13,24,34} {12,13,14,15,23} {12,13,14,23,25} {12,13,14,23,45} {12,13,14,25,35} {12,13,24,35,45} (End)
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Washington Bomfim, Table of n, a(n) for n = 0..500
- R. K. Guy, Letters to N. J. A. Sloane and J. W. Moon, 1988
- Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
- Eric Weisstein's World of Mathematics, Pseudotree
- Wikipedia, Pseudoforest
Crossrefs
Programs
-
Mathematica
Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0; b = Drop[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 0, nn}] /. sol], 1]; r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c = Drop[Table[ CoefficientList[ Series[CycleIndex[DihedralGroup[n], s] /. Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3, nn}] // Total, 1]; d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[ Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
-
PARI
\\ TreeGf gives gf of A000081. TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021
Extensions
More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008
Comments