cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005750 Number of planted matched trees with n nodes.

Original entry on oeis.org

1, 1, 3, 10, 39, 160, 702, 3177, 14830, 70678, 342860, 1686486, 8393681, 42187148, 213828802, 1091711076, 5609297942, 28982708389, 150496728594, 784952565145, 4110491658233, 21602884608167, 113907912618599, 602414753753310, 3194684310627727, 16984594260224529
Offset: 1

Views

Author

Keywords

Comments

When convolved with itself gives A000151.
Number of rooted trees with n nodes and edges not attached to root are 2-colored or oriented.
Also number of 2-trees (with 2n+1 cells) rooted at a symmetric end-edge. - Vladeta Jovovic, Aug 22 2001

Examples

			A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 160*x^6 + 702*x^7 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.5.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.3).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(add((A(n-1)(x^k))^2/(k*x^k), k=1..2*n)), x=0,2*n), polynom), x) fi end: a:= n-> coeff(series(A(n)(x), x=0, n+1), x,n): seq(a(n), n=1..23); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    max = 23; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[ Log[f[x]/x] - Sum[f[x^k]^2/(k*x^k), {k, 1, max}], {x, 0, max}], x]; eqns = Rest[ Thread[coes == 0]]; s[2] = Solve[eqns[[1]], c[2]][[1]]; Do[eqns = Rest[eqns] /. s[k-1]; s[k] = Solve[ eqns[[1]], c[k]][[1]], {k, 3, max}]; Table[c[k], {k, 1, max}] /. Flatten[ Table[s[k], {k, 2, max}]] (* Jean-François Alcover, Oct 25 2011, after g.f. *)
    terms = 26; (* B = g.f. of A000151 *) B[] = 0; Do[B[x] = x*Exp[2*Sum[ B[x^k]/k, {k, 1, terms}]] + O[x]^terms // Normal, terms];
    A[x_] = Exp[Sum[B[x^k]/k, {k, 1, terms}]] + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for(n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(sqrt(Ser(A)))} \\ Andrew Howroyd, May 13 2018

Formula

a(n+1) is Euler transform of A000151.
G.f.: A(x) = x*exp( A(x)^2/x + A(x^2)^2/(2x^2) + A(x^3)^2/(3x^3) + ... + A(x^n)^2/(n*x^n) + ...). [Harary & Palmer (3.5.8)] - Paul D. Hanna
G.f.: sqrt(B(x)/x) where B(x) is the g.f. of A000151. - Andrew Howroyd, May 13 2018
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232..., c = 0.06185402386554883780092844840921448929211072031752507960399709674242810089... - Vaclav Kotesovec, Sep 12 2014, updated Dec 26 2020
a(n) = A063687(n)+2*A058870(n). [Harary & Palmer (3.5.3)] - R. J. Mathar, Jan 13 2025

Extensions

More terms, formula and comment from Christian G. Bower, Dec 15 1999