cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005783 Number of 3-covers of an unlabeled n-set.

Original entry on oeis.org

1, 3, 9, 23, 51, 103, 196, 348, 590, 960, 1506, 2290, 3393, 4905, 6945, 9651, 13185, 17739, 23542, 30846, 39954, 51206, 64986, 81730, 101935, 126141, 154967, 189093, 229269, 276325, 331182, 394830, 468372, 553002, 650016, 760824, 886963
Offset: 0

Views

Author

Keywords

Comments

Equals first differences of A002727. - Vladeta Jovovic, May 24 2000
Number of 3 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^6+x^4+2x^3+x^2+1)/((1-x^3)^2(1-x^2)^2 (1-x)^3),{x,0,50}],x] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    Vec(G(3, x)*(1 - x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

G.f.: (x^6+x^4+2*x^3+x^2+1)/((1-x^3)^2*(1-x^2)^2*(1-x)^3).
a(n) ~ n^6/4320. - Stefano Spezia, Aug 08 2022
a(n) = n^6/4320 + 7*n^5/1440 + 79*n^4/1728 + 35*n^3/144 + 2939*n^2/4320 + 8863*n/8640 + 1 + (n/16 + 7/32)*floor(n/2) + (n/9 + 11/27)*floor(n/3) + floor((n+1)/3)/27. - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, May 24 2000
a(0) = 1 prepended by Stefano Spezia, Aug 09 2022