A005789 3-dimensional Catalan numbers.
1, 1, 5, 42, 462, 6006, 87516, 1385670, 23371634, 414315330, 7646001090, 145862174640, 2861142656400, 57468093927120, 1178095925505960, 24584089974896430, 521086299271824330, 11198784501894470250, 243661974372798631650, 5360563436201569896300
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Snover, Stephen L.; and Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- Joerg Arndt, The a(3)=42 Young tableaux of shape [3,3,3].
- Nicolas Borie, Three-dimensional Catalan numbers and product-coproduct prographs, arXiv:1704.00212 [math.CO], 2017.
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- Paul Drube, Maxwell Krueger, Ashley Skalsky, and Meghan Wren, Set-Valued Young Tableaux and Product-Coproduct Prographs, arXiv:1710.02709 [math.CO], 2017.
- Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - _N. J. A. Sloane_, Jul 07 2012
- Katarzyna Górska and Karol A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
- Martin Griffiths and Nick Lord, The hook-length formula and generalised Catalan numbers, The Mathematical Gazette Vol. 95, No. 532 (March 2011), pp. 23-30
- Richard Kenyon, Jason Miller, Scott Sheffield, and David B. Wilson, Bipolar orientations on planar maps and SLE_12, arXiv preprint arXiv:1511.04068 [math.PR], 2015. Also The Annals of Probability (2019) Vol. 47, No. 3, 1240-1269.
- Joel Brewster Lewis, Pattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux, arXiv:0909.4966 [math.CO], 2009-2011. [From _Joel B. Lewis_, Oct 04 2009]
- Joel Brewster Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012. - From _N. J. A. Sloane_, Oct 12 2012
- Andrew Lohr, Several Topics in Experimental Mathematics, arXiv:1805.00076 [math.CO], 2018.
- Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 13.
- Maya Sankar, Further Bijections to Pattern-Avoiding Valid Hook Configurations, arXiv:1910.08895 [math.CO], 2019.
- Stephen Snover, Letter to N. J. A. Sloane, May 1991
- Robert A. Sulanke, Three-dimensional Narayana and Schröder numbers, Theoretical Computer Science, Volume 346, Issues 2-3, 28 November 2005, Pages 455-468.
- Robert A. Sulanke, Generalizing Narayana and Schroeder Numbers to Higher Dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. (see page 16)
- Stephanie F. Troyer and Stephen L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
- Wolfgang Unger, Combinatorics of Lattice QCD at Strong Coupling, arXiv:1411.4493 [hep-lat], 2014.
- Manuel Wettstein, Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers, arXiv:1602.07235 [cs.CG], 2016 and Discr. Comp. Geom. 58 (2017) 505-525.
- Sherry H. F. Yan, On Wilf equivalence for alternating permutations, Elect. J. Combinat.; 20 (2013), #P58.
Programs
-
Magma
[2*Factorial(3*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2)): n in [0..20]]; // Vincenzo Librandi, Oct 14 2017
-
Maple
a:= n-> (3*n)! *mul(i!/(n+i)!, i=0..2): seq(a(n), n=0..20); # Alois P. Heinz, Feb 23 2012
-
Mathematica
Needs["Combinatorica`"] Table[ NumberOfTableaux@ {n, n, n}, {n, 0, 17}] (* Robert G. Wilson v, Nov 15 2006 *) Table[2*(3*n)!/(n!*(n+1)!*(n+2)!),{n,0,20}] (* Vaclav Kotesovec, Nov 13 2014 *) aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
-
PARI
a(n) = 2*(3*n)!/(n!*(n+1)!*(n+2)!); \\ Altug Alkan, Mar 14 2018
Formula
a(n) = 2*(3*n)!/(n!*(n+1)!*(n+2)!).
a(n) = 0!*1!*..*(k-1)! *(k*n)! / ( n!*(n+1)!*..*(n+k-1)! ) for k=3.
G.f.: (1/30)*(1/x-27)*(9*hypergeom([1/3, 2/3],[1],27*x)+(216*x+1)* hypergeom([4/3, 5/3],[2],27*x))-1/(3*x). - Mark van Hoeij, Oct 14 2009
a(n) ~ 3^(3*n+1/2) / (Pi*n^4). - Vaclav Kotesovec, Nov 13 2014
D-finite with recurrence (n+2)*(n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Aug 10 2015
G.f.: x*3F2(4/3,5/3,1;4,3;27x). - R. J. Mathar, Aug 10 2015
E.g.f.: 2F2(1/3,2/3; 2,3; 27*x). - Ilya Gutkovskiy, Oct 13 2017
Extensions
Added a(0), merged A151334 into this one. - N. J. A. Sloane, Feb 24 2016
Comments