Original entry on oeis.org
1, 1, 5, 42, 462, 6006, 87516, 1385670, 23371634, 414315330, 7646001090, 145862174640, 2861142656400, 57468093927120
Offset: 0
A060854
Array T(m,n) read by antidiagonals: T(m,n) (m >= 1, n >= 1) = number of ways to arrange the numbers 1,2,...,m*n in an m X n matrix so that each row and each column is increasing.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 14, 42, 14, 1, 1, 42, 462, 462, 42, 1, 1, 132, 6006, 24024, 6006, 132, 1, 1, 429, 87516, 1662804, 1662804, 87516, 429, 1, 1, 1430, 1385670, 140229804, 701149020, 140229804, 1385670, 1430, 1, 1, 4862, 23371634, 13672405890, 396499770810, 396499770810, 13672405890, 23371634, 4862, 1
Offset: 1
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 14, 42, 132, ...
1, 5, 42, 462, 6006, 87516, ...
1, 14, 462, 24024, 1662804, 140229804, ...
1, 42, 6006, 1662804, 701149020, 396499770810, ...
1, 132, 87516, 140229804, 396499770810, 1671643033734960, ...
- Guido Castelnuovo, Numero degli spazi che segano più rette in uno spazio ad n dimensioni, Rendiconti della R. Accademia dei Lincei, s. IV, vol. V, 4 agosto 1889. In Guido Castelnuovo, Memorie scelte, Zanichelli, Bologna 1937, pp. 55-64 (in Italian).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 7.23.19(b).
- Alois P. Heinz, Antidiagonals n = 1..36
- Albrecht Böttcher, Wiener-Hopf Determinants with Rational Symbols, Math. Nachr. 144 (1989), 39-64.
- Freddy Cachazo and Nick Early, Minimal Kinematics: An all k and n peek into Trop^+G(k,n), arXiv:2003.07958 [hep-th], 2020.
- Freddy Cachazo and Nick Early, Planar Kinematics: Cyclic Fixed Points, Mirror Superpotential, k-Dimensional Catalan Numbers, and Root Polytopes, arXiv:2010.09708 [math.CO], 2020.
- Freddy Cachazo and Nick Early, Biadjoint Scalars and Associahedra from Residues of Generalized Amplitudes, arXiv:2204.01743 [hep-th], 2022.
- Andrzej Dudek, Jarosław Grytczuk, Jakub Przybyło, and Andrzej Ruciński, Homogeneous substructures in random ordered hyper-matchings, arXiv:2507.20374 [math.CO], 2025. See p. 19.
- Nick Early, Planarity in Generalized Scattering Amplitudes: PK Polytope, Generalized Root Systems and Worldsheet Associahedra, arXiv:2106.07142 [math.CO], 2021, see p. 14.
- Ömer Eğecioğlu, On Böttcher's mysterious identity, Australasian Journal of Combinatorics, Volume 43 (2009), 307-316.
- Paul Drube, Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers, arXiv:1606.04869 [math.CO], 2016.
- Claudio Fontanari, Guido Castelnuovo and his heritage: geometry, combinatorics, teaching, arXiv:2206.06709 [math.HO], 2022. See pp. 2-3.
- J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.
- Alexander Garver and Thomas McConville, Chapoton triangles for nonkissing complexes, Algebraic Combinatorics, 3 (2020), pp. 1331-1363.
- Katarzyna Górska and Karol A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
- Owen John Levens, Joel Brewster Lewis, and Bridget Eileen Tenner, Global patterns in signed permutations, arXiv:2504.13108 [math.CO], 2025. See p. 18.
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 5.
- Francisco Santos, Christian Stump, and Volkmar Welker, Noncrossing sets and a Graßmannian associahedron, in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 609-620.
- Wikipedia, Hook length formula
-
T:= (m, n)-> (m*n)! * mul(i!/(m+i)!, i=0..n-1):
seq(seq(T(n, 1+d-n), n=1..d), d=1..10);
-
maxm = 10; t[m_, n_] := Product[k!, {k, 0, n - 1}]*(m*n)! / Product[k!, {k, m, m + n - 1}]; Flatten[ Table[t[m + 1 - n, n], {m, 1, maxm}, {n, 1, m}]] (* Jean-François Alcover, Sep 21 2011 *)
Table[ BarnesG[n+1]*(n*(m-n+1))!*BarnesG[m-n+2] / BarnesG[m+2], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
-
{A(i, j) = if( i<0 || j<0, 0, (i*j)! / prod(k=1, i+j-1, k^vecmin([k, i, j, i+j-k])))}; /* Michael Somos, Jan 28 2004 */
A039622
Number of n X n Young tableaux.
Original entry on oeis.org
1, 1, 2, 42, 24024, 701149020, 1671643033734960, 475073684264389879228560, 22081374992701950398847674830857600, 220381378415074546123953914908618547085974856000, 599868742615440724911356453304513631101279740967209774643120000
Offset: 0
Using the hook length formula, a(4) = (16)!/(7*6^2*5^3*4^4*3^3*2^2) = 24024.
- M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 284.
- Alois P. Heinz, Table of n, a(n) for n = 0..30
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Joerg Arndt, The a(3)=42 3 X 3 Young tableaux
- J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 349.
- J. B. Conrey, Review of H. Iwaniec, "Lectures on the Riemann Zeta Function" (AMS, 2014), Bull. Amer. Math. Soc., 53 (No. 3, 2016), 507-512.
- P.-O. Dehaye, Combinatorics of the lower order terms in the moment conjectures: the Riemann zeta function, arXiv preprint arXiv:1201.4478 [math.NT], 2012.
- J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.
- Curtis Greene and Brady Haran, Shapes and Hook Numbers, Numberphile video (2016)
- Curtis Greene and Brady Haran, Shapes and Hook Numbers (extra footage) (2016)
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Alejandro H. Morales, I. Pak, and G. Panova, Why is pi < 2 phi?, Preprint, 2016; The American Mathematical Monthly, Volume 125, 2018 - Issue 8.
- Alan H. Rapoport (proposer), Solution to Problem 639: A Square Young Tableau, College Mathematics Journal, Vol. 30 (1999), no. 5, pp. 410-411.
- Index entries for sequences related to Young tableaux.
-
A039622:= func< n | n eq 0 select 1 else Factorial(n^2)*(&*[Factorial(j)/Factorial(n+j): j in [0..n-1]]) >;
[A039622(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
-
a:= n-> (n^2)! *mul(k!/(n+k)!, k=0..n-1):
seq(a(n), n=0..12); # Alois P. Heinz, Apr 10 2012
-
a[n_]:= (n^2)!*Product[ k!/(n+k)!, {k, 0, n-1}]; Table[ a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 06 2011, after Pari *)
-
a(n)=(n^2)!*prod(k=0,n-1,k!/(n+k)!)
-
def A039622(n): return factorial(n^2)*product( factorial(j)/factorial(n+j) for j in (0..n-1))
[A039622(n) for n in (0..12)] # G. C. Greubel, Apr 21 2021
A005790
4-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 14, 462, 24024, 1662804, 140229804, 13672405890, 1489877926680, 177295473274920, 22661585038594320, 3073259571003214320, 438091463242348309440, 65166105157299311029200, 10056663345892631910888600, 1602608179958939072505281850, 262708662267696303439658400600
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
- Seiichi Manyama, Table of n, a(n) for n = 0..423 (terms 1..130 from Alois P. Heinz)
- Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - _N. J. A. Sloane_, Jul 07 2012
- Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
- Katarzyna Górska and Karol A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 13.
- Stephen Snover, Letter to N. J. A. Sloane, May 1991
- Stephanie F. Troyer and Stephen L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
-
[12*Factorial(4*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2) *Factorial(n+3)): n in [0..20]]; // Vincenzo Librandi, Nov 23 2018
-
a:= n-> (4*n)! * mul(i!/(4+i)!, i=0..n-1):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2012
-
Table[12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!), {n, 0, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)
-
vector(20, n, n--; 12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!)) \\ G. C. Greubel, Nov 23 2018
-
[12*factorial(4*n)/(factorial(n)*factorial(n+1)*factorial(n+2) *factorial(n+3)) for n in range(20)] # G. C. Greubel, Nov 23 2018
A005791
5-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 42, 6006, 1662804, 701149020, 396499770810, 278607172289160, 231471904322784840, 219738059326729823880, 232553551737813227594400, 269396678720275351794712800, 336839101096824285057473785200, 449620757769949216266129125515200
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
- Alois P. Heinz, Table of n, a(n) for n = 0..294
- Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - _N. J. A. Sloane_, Jul 07 2012
- K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013, and Prob. Math. Stat. 33 (2) (2013) 265-274.
- S. Snover, Letter to N. J. A. Sloane, May 1991
- S. F. Troyer & S. L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
-
a:= n-> (5*n)! * mul(i!/(n+i)!, i=0..4):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 23 2017
-
Table[288*(5*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!), {n, 1, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)
A007724
Even minus odd extensions of truncated 3 X 2n grid diagram.
Original entry on oeis.org
2, 12, 110, 1274, 17136, 255816, 4124406, 70549050, 1264752060, 23555382240, 452806924752, 8939481277552, 180551099694400, 3719061442253520, 77933728043586630, 1658001861319441050, 35749633305661575300, 780123576993991461000, 17208112644166765652100
Offset: 2
- J. B. Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012.
- F. Ruskey, Generating linear extensions of posets by transpositions, J. Combin. Theory, B 54 (1992), 77-101.
- Dennis White, Sign-balanced posets
After corrections, is very similar to
A217800.
-
A007724 := proc(n)
combinat[multinomial](3*n,n-1,n,n+1)/n/(2*n-1)/(2*n+1) ;
end proc:
seq(A007724(n),n=2..40) ; # R. J. Mathar, Jul 07 2023
-
Table[(3*n)!/((n-1)!*n!*(n+1)!)/(n*(2*n-1)*(2*n+1)),{n,2,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
Table[(-1)^n HypergeometricPFQ[{-2 - 2 n, -2 n, -2 n - 1}, {2, 3}, 1], {n, 19}] (* Michael De Vlieger, Aug 22 2016 *)
-
{a(n) = if(n<2, 0, (3*n)!/((2*n+1) * (2*n-1) * (n+1)! * n!^2))}; /* Michael Somos, Jul 04 2020 */
a(16)-a(18) corrected and a(19)-a(20) added by
Alois P. Heinz, Aug 22 2016
A215204
Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, ...
: 2, 2, 4, 10, 28, 84, ...
: 3, 4, 26, 276, 3740, 58604, ...
: 5, 10, 258, 14318, 1161678, 118316062, ...
: 7, 26, 3346, 1214358, 741215012, 620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
end:
A:= (n, k)-> g(n, n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
A[n_, k_] := g[n, n, k, {}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)
A217800
Number of alternating permutations on 2n+1 letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).
Original entry on oeis.org
1, 2, 12, 110, 1274, 17136, 255816, 4124406, 70549050, 1264752060, 23555382240, 452806924752, 8939481277552, 180551099694400, 3719061442253520, 77933728043586630, 1658001861319441050, 35749633305661575300, 780123576993991461000, 17208112644166765652100
Offset: 0
-
[Factorial(3*n+3)/((4*(n+1)^2-1)*Factorial((n+1))^2*Factorial(n+ 2)): n in [0..20]]; // Vincenzo Librandi, Aug 30 2014
-
a := n -> (-1)^n*hypergeom([-2-2*n, -2*n, -2*n-1], [2, 3], 1):
seq(round(evalf(a(n), 32)), n=0..20); # Peter Luschny, Aug 29 2014
-
Table[(3 n + 3)!/((4 (n + 1)^2 - 1) ((n + 1)!)^2 (n + 2)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 30 2014 *)
Table[(-1)^n HypergeometricPFQ[{-2 - 2 n, -2 n, -2 n - 1}, {2, 3}, 1], {n, 0, 20}] (* Michael De Vlieger, Aug 22 2016 *)
-
a(n) = (3*n+3)!/((4*(n+1)^2-1)*((n+1)!)^2*(n+2)!); \\ Michel Marcus, Aug 10 2014
A321975
6-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 9490348077234178440, 67867669180627125604080, 583692803893929928888544400, 5838544419011620940996212276800, 66244124978105851196543024492572800, 836288764382254532915188713779640302400, 11570895443447601081407359451642915869302000
Offset: 0
-
List([0..15],n->34560*Factorial(6*n)/Product([0..5],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[34560*Factorial(6*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
a:= n-> (6*n)! * mul(i!/(6+i)!, i=0..n-1):
seq(a(n), n=0..14); # Alois P. Heinz, Nov 25 2018
-
Table[34560 (6 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)!), {n, 0, 60}] (* Vincenzo Librandi, Nov 24 2018 *)
-
{a(n) = 34560*(6*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!)}
A123555
Number of standard Young tableaux of type (n+1,n,n-1).
Original entry on oeis.org
0, 2, 16, 168, 2112, 30030, 466752, 7759752, 135980416, 2485891980, 47052314400, 916847954880, 18311313000960, 373542610526280, 7761573156274560, 163893933165976200, 3510476121410184960, 76151734612882397700, 1670824967127762045600, 37036620104665392010800, 828632324276985756528000
Offset: 0
Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
- For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.
- G. C. Greubel, Table of n, a(n) for n = 0..700
- Joerg Arndt, The a(3)=168 Young tableaux of shape [4,3,2].
- Joel B. Lewis, Pattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux, arXiv:0909.4966 [math.CO], 2009-2011. [_Joel B. Lewis_, Oct 05 2009]
- Joel B. Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012.
- Sherry H. F. Yan, On Wilf equivalence for alternating permutations, Elect. J. Combinat.; 20 (2013), #P58.
- Index entries for sequences related to Young tableaux.
-
f[n_]:=16 (3 n)!/((n-1)! (n+1)! (n+3)!)
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Table[ NumberOfTableaux@ {n + 1, n, n - 1}, {n, 0, 17}] (* Robert G. Wilson v *)
-
for(n=0,25, print1(16*(3*n)!/((n-1)!*(n+1)!*(n+3)!), ", ")) \\ G. C. Greubel, Oct 15 2017
Showing 1-10 of 32 results.
Comments