A060854
Array T(m,n) read by antidiagonals: T(m,n) (m >= 1, n >= 1) = number of ways to arrange the numbers 1,2,...,m*n in an m X n matrix so that each row and each column is increasing.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 14, 42, 14, 1, 1, 42, 462, 462, 42, 1, 1, 132, 6006, 24024, 6006, 132, 1, 1, 429, 87516, 1662804, 1662804, 87516, 429, 1, 1, 1430, 1385670, 140229804, 701149020, 140229804, 1385670, 1430, 1, 1, 4862, 23371634, 13672405890, 396499770810, 396499770810, 13672405890, 23371634, 4862, 1
Offset: 1
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 14, 42, 132, ...
1, 5, 42, 462, 6006, 87516, ...
1, 14, 462, 24024, 1662804, 140229804, ...
1, 42, 6006, 1662804, 701149020, 396499770810, ...
1, 132, 87516, 140229804, 396499770810, 1671643033734960, ...
- Guido Castelnuovo, Numero degli spazi che segano più rette in uno spazio ad n dimensioni, Rendiconti della R. Accademia dei Lincei, s. IV, vol. V, 4 agosto 1889. In Guido Castelnuovo, Memorie scelte, Zanichelli, Bologna 1937, pp. 55-64 (in Italian).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 7.23.19(b).
- Alois P. Heinz, Antidiagonals n = 1..36
- Albrecht Böttcher, Wiener-Hopf Determinants with Rational Symbols, Math. Nachr. 144 (1989), 39-64.
- Freddy Cachazo and Nick Early, Minimal Kinematics: An all k and n peek into Trop^+G(k,n), arXiv:2003.07958 [hep-th], 2020.
- Freddy Cachazo and Nick Early, Planar Kinematics: Cyclic Fixed Points, Mirror Superpotential, k-Dimensional Catalan Numbers, and Root Polytopes, arXiv:2010.09708 [math.CO], 2020.
- Freddy Cachazo and Nick Early, Biadjoint Scalars and Associahedra from Residues of Generalized Amplitudes, arXiv:2204.01743 [hep-th], 2022.
- Andrzej Dudek, Jarosław Grytczuk, Jakub Przybyło, and Andrzej Ruciński, Homogeneous substructures in random ordered hyper-matchings, arXiv:2507.20374 [math.CO], 2025. See p. 19.
- Nick Early, Planarity in Generalized Scattering Amplitudes: PK Polytope, Generalized Root Systems and Worldsheet Associahedra, arXiv:2106.07142 [math.CO], 2021, see p. 14.
- Ömer Eğecioğlu, On Böttcher's mysterious identity, Australasian Journal of Combinatorics, Volume 43 (2009), 307-316.
- Paul Drube, Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers, arXiv:1606.04869 [math.CO], 2016.
- Claudio Fontanari, Guido Castelnuovo and his heritage: geometry, combinatorics, teaching, arXiv:2206.06709 [math.HO], 2022. See pp. 2-3.
- J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.
- Alexander Garver and Thomas McConville, Chapoton triangles for nonkissing complexes, Algebraic Combinatorics, 3 (2020), pp. 1331-1363.
- Katarzyna Górska and Karol A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
- Owen John Levens, Joel Brewster Lewis, and Bridget Eileen Tenner, Global patterns in signed permutations, arXiv:2504.13108 [math.CO], 2025. See p. 18.
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 5.
- Francisco Santos, Christian Stump, and Volkmar Welker, Noncrossing sets and a Graßmannian associahedron, in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 609-620.
- Wikipedia, Hook length formula
-
T:= (m, n)-> (m*n)! * mul(i!/(m+i)!, i=0..n-1):
seq(seq(T(n, 1+d-n), n=1..d), d=1..10);
-
maxm = 10; t[m_, n_] := Product[k!, {k, 0, n - 1}]*(m*n)! / Product[k!, {k, m, m + n - 1}]; Flatten[ Table[t[m + 1 - n, n], {m, 1, maxm}, {n, 1, m}]] (* Jean-François Alcover, Sep 21 2011 *)
Table[ BarnesG[n+1]*(n*(m-n+1))!*BarnesG[m-n+2] / BarnesG[m+2], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
-
{A(i, j) = if( i<0 || j<0, 0, (i*j)! / prod(k=1, i+j-1, k^vecmin([k, i, j, i+j-k])))}; /* Michael Somos, Jan 28 2004 */
A039622
Number of n X n Young tableaux.
Original entry on oeis.org
1, 1, 2, 42, 24024, 701149020, 1671643033734960, 475073684264389879228560, 22081374992701950398847674830857600, 220381378415074546123953914908618547085974856000, 599868742615440724911356453304513631101279740967209774643120000
Offset: 0
Using the hook length formula, a(4) = (16)!/(7*6^2*5^3*4^4*3^3*2^2) = 24024.
- M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 284.
- Alois P. Heinz, Table of n, a(n) for n = 0..30
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Joerg Arndt, The a(3)=42 3 X 3 Young tableaux
- J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 349.
- J. B. Conrey, Review of H. Iwaniec, "Lectures on the Riemann Zeta Function" (AMS, 2014), Bull. Amer. Math. Soc., 53 (No. 3, 2016), 507-512.
- P.-O. Dehaye, Combinatorics of the lower order terms in the moment conjectures: the Riemann zeta function, arXiv preprint arXiv:1201.4478 [math.NT], 2012.
- J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.
- Curtis Greene and Brady Haran, Shapes and Hook Numbers, Numberphile video (2016)
- Curtis Greene and Brady Haran, Shapes and Hook Numbers (extra footage) (2016)
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Alejandro H. Morales, I. Pak, and G. Panova, Why is pi < 2 phi?, Preprint, 2016; The American Mathematical Monthly, Volume 125, 2018 - Issue 8.
- Alan H. Rapoport (proposer), Solution to Problem 639: A Square Young Tableau, College Mathematics Journal, Vol. 30 (1999), no. 5, pp. 410-411.
- Index entries for sequences related to Young tableaux.
-
A039622:= func< n | n eq 0 select 1 else Factorial(n^2)*(&*[Factorial(j)/Factorial(n+j): j in [0..n-1]]) >;
[A039622(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
-
a:= n-> (n^2)! *mul(k!/(n+k)!, k=0..n-1):
seq(a(n), n=0..12); # Alois P. Heinz, Apr 10 2012
-
a[n_]:= (n^2)!*Product[ k!/(n+k)!, {k, 0, n-1}]; Table[ a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 06 2011, after Pari *)
-
a(n)=(n^2)!*prod(k=0,n-1,k!/(n+k)!)
-
def A039622(n): return factorial(n^2)*product( factorial(j)/factorial(n+j) for j in (0..n-1))
[A039622(n) for n in (0..12)] # G. C. Greubel, Apr 21 2021
A245173
Triangle read by rows: coefficients of the polynomials A_{3,4}(n,k).
Original entry on oeis.org
1, 0, 1, 0, 1, 6, 6, 1, 0, 1, 22, 113, 190, 113, 22, 1, 0, 1, 53, 710, 3548, 7700, 7700, 3548, 710, 53, 1, 0, 1, 105, 2856, 30422, 151389, 385029, 523200, 385029, 151389, 30422, 2856, 105, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 6, 6, 1;
0, 1, 22, 113, 190, 113, 22, 1;
0, 1, 53, 710, 3548, 7700, 7700, 3548, 710, 53, 1;
0, 1, 105, 2856, 30422, 151389, 385029, 523200, 385029, 151389, 30422, 2856, 105, 1;
...
-
GG[a_, b_] := z (Product[(k)!/(a + k)!, {k, 0, b - 1}]) z^(1 - a) (1 - z)^(a b + 1) Nest[Simplify[z^(a - 1) D[#, {z, a}]] &, 1/(1 - z), b];
Table[CoefficientList[GG[a, 4] // Together, z], {a, 1, 8}] (* Per W. Alexandersson, Sep 05 2019 *)
A215204
Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, ...
: 2, 2, 4, 10, 28, 84, ...
: 3, 4, 26, 276, 3740, 58604, ...
: 5, 10, 258, 14318, 1161678, 118316062, ...
: 7, 26, 3346, 1214358, 741215012, 620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
end:
A:= (n, k)-> g(n, n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
A[n_, k_] := g[n, n, k, {}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)
A321975
6-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 9490348077234178440, 67867669180627125604080, 583692803893929928888544400, 5838544419011620940996212276800, 66244124978105851196543024492572800, 836288764382254532915188713779640302400, 11570895443447601081407359451642915869302000
Offset: 0
-
List([0..15],n->34560*Factorial(6*n)/Product([0..5],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[34560*Factorial(6*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
a:= n-> (6*n)! * mul(i!/(6+i)!, i=0..n-1):
seq(a(n), n=0..14); # Alois P. Heinz, Nov 25 2018
-
Table[34560 (6 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)!), {n, 0, 60}] (* Vincenzo Librandi, Nov 24 2018 *)
-
{a(n) = 34560*(6*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!)}
A321976
7-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560, 32103104214166146088869942000, 2760171874087743799855959353857200, 289232890341906497299306268771988273600, 35764585916110766978895474668714467232388000
Offset: 0
-
List([0..15],n->24883200*Factorial(7*n)/Product([0..6],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[24883200*Factorial(7*n) / (Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
Table[24883200*(7*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!*(n+6)!),{n,0,15}] (* Vincenzo Librandi, Nov 24 2018 *)
-
{a(n) = 24883200*(7*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!*(n+6)!)}
A321977
8-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 1430, 23371634, 1489877926680, 231471904322784840, 67867669180627125604080, 32103104214166146088869942000, 22081374992701950398847674830857600, 20535535214275361308250745082811167425600, 24486819823897171791550434989846505231774984000
Offset: 0
-
List([0..15],n->125411328000*Factorial(8*n)/Product([0..7],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[125411328000*Factorial(8*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
Table[125411328000 (8 n)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)! (n+6)! (n + 7)!), {n, 0, 15}] (* Vincenzo Librandi, Nov 24 2018 *)
A321716
Triangle read by rows: T(n,k) is the number of n X k Young tableaux, where 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 5, 42, 1, 1, 14, 462, 24024, 1, 1, 42, 6006, 1662804, 701149020, 1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560
Offset: 0
T(4,3) = 12! / ((6*5*4)*(5*4*3)*(4*3*2)*(3*2*1)) = 462.
Triangle begins:
1;
1, 1;
1, 1, 2;
1, 1, 5, 42;
1, 1, 14, 462, 24024;
1, 1, 42, 6006, 1662804, 701149020;
1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960;
-
A321716:= func< n,k | n eq 0 select 1 else Factorial(n*k)/(&*[ Round(Gamma(j+k)/Gamma(j)): j in [1..n]]) >;
[A321716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2021
-
T[n_, k_]:= (n*k)!/Product[Product[i+j-1, {j,1,k}], {i,1,n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 17 2018 *)
T[n_, k_]:= (n*k)!*BarnesG[n+1]*BarnesG[k+1]/BarnesG[n+k+1];
Table[T[n, k], {n, 0, 5}, {k, 0, n}] //Flatten (* G. C. Greubel, May 04 2021 *)
-
def A321716(n,k): return factorial(n*k)/product( gamma(j+k)/gamma(j) for j in (1..n) )
flatten([[A321716(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 04 2021
A321978
9-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 4862, 414315330, 177295473274920, 219738059326729823880, 583692803893929928888544400, 2760171874087743799855959353857200, 20535535214275361308250745082811167425600, 220381378415074546123953914908618547085974856000
Offset: 0
-
List([0..10],n->5056584744960000*Factorial(9*n)/Product([0..8],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[5056584744960000*Factorial(9*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)*Factorial(n + 8)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
Table[5056584744960000 (9 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)! (n + 6)! (n + 7)! (n + 8)!), {n, 0, 15}] (* Vincenzo Librandi, Nov 24 2018 *)
Showing 1-9 of 9 results.
Comments