cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060854 Array T(m,n) read by antidiagonals: T(m,n) (m >= 1, n >= 1) = number of ways to arrange the numbers 1,2,...,m*n in an m X n matrix so that each row and each column is increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 14, 42, 14, 1, 1, 42, 462, 462, 42, 1, 1, 132, 6006, 24024, 6006, 132, 1, 1, 429, 87516, 1662804, 1662804, 87516, 429, 1, 1, 1430, 1385670, 140229804, 701149020, 140229804, 1385670, 1430, 1, 1, 4862, 23371634, 13672405890, 396499770810, 396499770810, 13672405890, 23371634, 4862, 1
Offset: 1

Views

Author

R. H. Hardin, May 03 2001

Keywords

Comments

Multidimensional Catalan numbers; a special case of the "hook-number formula".
Number of paths from (0,0,...,0) to (n,n,...,n) in m dimensions, all coordinates increasing: if (x_1,x_2,...,x_m) is on the path, then x_1 <= x_2 <= ... <= x_m. Number of ways to label an n by m array with all the values 1..n*m such that each row and column is strictly increasing. Number of rectangular Young Tableaux. Number of linear extensions of the n X m lattice (the divisor lattice of a number having exactly two prime divisors). - Mitch Harris, Dec 27 2005
Given m*n lines in a {(m + 1)(n - 1)}-dimensional space, T(m, n) is the number of {n*(m-1)-1}-dimensional spaces cutting these lines in points (see Fontanari and Castelnuovo). - Stefano Spezia, Jun 19 2022

Examples

			Array begins:
  1,   1,     1,         1,            1,                1, ...
  1,   2,     5,        14,           42,              132, ...
  1,   5,    42,       462,         6006,            87516, ...
  1,  14,   462,     24024,      1662804,        140229804, ...
  1,  42,  6006,   1662804,    701149020,     396499770810, ...
  1, 132, 87516, 140229804, 396499770810, 1671643033734960, ...
		

References

  • Guido Castelnuovo, Numero degli spazi che segano più rette in uno spazio ad n dimensioni, Rendiconti della R. Accademia dei Lincei, s. IV, vol. V, 4 agosto 1889. In Guido Castelnuovo, Memorie scelte, Zanichelli, Bologna 1937, pp. 55-64 (in Italian).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 7.23.19(b).

Crossrefs

Rows give A000108 (Catalan numbers), A005789, A005790, A005791, A321975, A321976, A321977, A321978.
Diagonals give A039622, A060855, A060856.
Cf. A227578. - Alois P. Heinz, Jul 18 2013
Cf. A321716.

Programs

  • Maple
    T:= (m, n)-> (m*n)! * mul(i!/(m+i)!, i=0..n-1):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..10);
  • Mathematica
    maxm = 10; t[m_, n_] := Product[k!, {k, 0, n - 1}]*(m*n)! / Product[k!, {k, m, m + n - 1}]; Flatten[ Table[t[m + 1 - n, n], {m, 1, maxm}, {n, 1, m}]] (* Jean-François Alcover, Sep 21 2011 *)
    Table[ BarnesG[n+1]*(n*(m-n+1))!*BarnesG[m-n+2] / BarnesG[m+2], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
  • PARI
    {A(i, j) = if( i<0 || j<0, 0, (i*j)! / prod(k=1, i+j-1, k^vecmin([k, i, j, i+j-k])))}; /* Michael Somos, Jan 28 2004 */

Formula

T(m, n) = 0!*1!*..*(n-1)! *(m*n)! / ( m!*(m+1)!*..*(m+n-1)! ).
T(m, n) = A000142(m*n)*A000178(m-1)*A000178(n-1)/A000178(m+n-1) = A000142(A004247(m, n)) * A007318(m+n, n)/A009963(m+n, n). - Henry Bottomley, May 22 2002

Extensions

More terms from Frank Ellermann, May 21 2001

A039622 Number of n X n Young tableaux.

Original entry on oeis.org

1, 1, 2, 42, 24024, 701149020, 1671643033734960, 475073684264389879228560, 22081374992701950398847674830857600, 220381378415074546123953914908618547085974856000, 599868742615440724911356453304513631101279740967209774643120000
Offset: 0

Views

Author

Keywords

Comments

Number of arrangements of 1,2,...,n^2 in an n X n array such that each row and each column is increasing. The problem for a 5 X 5 array was recently posed and solved in the College Mathematics Journal. See the links.
This is the factor g_n that appears in a conjectured formula for 2n-th moment of the Riemann zeta function on the critical line. (See Conrey articles.) - Michael Somos, Apr 15 2003 [Comment revised by N. J. A. Sloane, Jun 21 2016]
Number of linear extensions of the n X n lattice. - Mitch Harris, Dec 27 2005

Examples

			Using the hook length formula, a(4) = (16)!/(7*6^2*5^3*4^4*3^3*2^2) = 24024.
		

References

  • M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 284.

Crossrefs

Main diagonal of A060854.
Also a(2)=A000108(2), a(3)=A005789(3), a(4)=A005790(4), a(5)=A005791(5).

Programs

  • Magma
    A039622:= func< n | n eq 0 select 1 else Factorial(n^2)*(&*[Factorial(j)/Factorial(n+j): j in [0..n-1]]) >;
    [A039622(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
    
  • Maple
    a:= n-> (n^2)! *mul(k!/(n+k)!, k=0..n-1):
    seq(a(n), n=0..12);  # Alois P. Heinz, Apr 10 2012
  • Mathematica
    a[n_]:= (n^2)!*Product[ k!/(n+k)!, {k, 0, n-1}]; Table[ a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 06 2011, after Pari *)
  • PARI
    a(n)=(n^2)!*prod(k=0,n-1,k!/(n+k)!)
    
  • Sage
    def A039622(n): return factorial(n^2)*product( factorial(j)/factorial(n+j) for j in (0..n-1))
    [A039622(n) for n in (0..12)] # G. C. Greubel, Apr 21 2021

Formula

a(n) = (n^2)! / Product_{k=1..2n-1} k^(n - |n-k|).
a(n) = 0!*1!*...*(k-1)! *(k*n)! / ( n!*(n+1)!*...*(n+k-1)! ) for k=n.
a(n) = A088020(n)/A107254(n) = A088020(n)*A000984(n)/A079478(n). - Henry Bottomley, May 14 2005
a(n) = A153452(prime(n)^n). - Naohiro Nomoto, Jan 01 2009
a(n) ~ sqrt(Pi) * n^(n^2+11/12) * exp(n^2/2+1/12) / (A * 2^(2*n^2-7/12)), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015
From Peter Luschny, May 20 2019: (Start)
a(n) = (G(1+n)*G(2+n)^(2-n)*(n^2)!*(G(3+n)/Gamma(2+n))^(n-1))/(G(1+2*n)*n!) where G(x) is the Barnes G function.
a(n) = A127223(n) / A107252(n). (End)
a(n) = (Gamma(n^2 +1)/Gamma(n+1))*(G(n+1)*G(n+2)/G(2*n+1)), where G(n) is the Barnes G-function. - G. C. Greubel, Apr 21 2021
a(n+2) = (n+2) * A060856(n+1) for n >= 0. - Tom Copeland, May 30 2022

A245173 Triangle read by rows: coefficients of the polynomials A_{3,4}(n,k).

Original entry on oeis.org

1, 0, 1, 0, 1, 6, 6, 1, 0, 1, 22, 113, 190, 113, 22, 1, 0, 1, 53, 710, 3548, 7700, 7700, 3548, 710, 53, 1, 0, 1, 105, 2856, 30422, 151389, 385029, 523200, 385029, 151389, 30422, 2856, 105, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2014

Keywords

Comments

From Per W. Alexandersson, Sep 05 2019: (Start)
Let F(n,0) = 1/(1-z), and F(n,k) = z^(n-1)*( d^n/dz^n F(n,k-1) ).
The n-th row is then given by the coefficients of the monic polynomial factor in the numerator of F(n,4).
The (k+1)-th entry in row n is given by the number of standard Young tableaux of rectangular shape (n,n,n,n), with exactly k descents. (Proved by G. Panova on MathOverflow, see Links.) (End)

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 6, 6, 1;
  0, 1, 22, 113, 190, 113, 22, 1;
  0, 1, 53, 710, 3548, 7700, 7700, 3548, 710, 53, 1;
  0, 1, 105, 2856, 30422, 151389, 385029, 523200, 385029, 151389, 30422, 2856, 105, 1;
...
		

Crossrefs

Row sums are given by A005790.

Programs

  • Mathematica
    GG[a_, b_] := z (Product[(k)!/(a + k)!, {k, 0, b - 1}]) z^(1 - a) (1 - z)^(a b + 1) Nest[Simplify[z^(a - 1) D[#, {z, a}]] &, 1/(1 - z), b];
    Table[CoefficientList[GG[a, 4] // Together, z], {a, 1, 8}] (* Per W. Alexandersson, Sep 05 2019 *)

A215204 Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2012

Keywords

Examples

			Square array A(n,k) begins:
:  1,  1,     1,         1,            1,                1, ...
:  1,  1,     1,         1,            1,                1, ...
:  2,  2,     4,        10,           28,               84, ...
:  3,  4,    26,       276,         3740,            58604, ...
:  5, 10,   258,     14318,      1161678,        118316062, ...
:  7, 26,  3346,   1214358,    741215012,     620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
		

Crossrefs

Columns k=0-5 give: A000041, A000085, A215266, A290202, A290214, A290274.
Rows n=0+1, 2-5 give: A000012, 2*A000108, 2*A005789 + A006335, 2*A005790 + 2*A213978 + A114714, 2*A005791 + 2*A215220 + 2*A213932 + A214638.
Main diagonal gives A290225.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
           add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
        end:
    A:= (n, k)-> g(n, n, k, []):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
    g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
    A[n_, k_] := g[n, n, k, {}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)

A321975 6-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 9490348077234178440, 67867669180627125604080, 583692803893929928888544400, 5838544419011620940996212276800, 66244124978105851196543024492572800, 836288764382254532915188713779640302400, 11570895443447601081407359451642915869302000
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2018

Keywords

Comments

Number of n X 6 Young tableaux.

Crossrefs

Programs

  • GAP
    List([0..15],n->34560*Factorial(6*n)/Product([0..5],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
  • Magma
    [34560*Factorial(6*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
    
  • Maple
    a:= n-> (6*n)! * mul(i!/(6+i)!, i=0..n-1):
    seq(a(n), n=0..14);  # Alois P. Heinz, Nov 25 2018
  • Mathematica
    Table[34560 (6 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)!), {n, 0, 60}] (* Vincenzo Librandi, Nov 24 2018 *)
  • PARI
    {a(n) = 34560*(6*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!)}
    

Formula

a(n) = 0!*1!*...*5! * (6*n)! / ( n!*(n+1)!*...*(n+5)! ).
a(n) ~ 5 * 2^(6*n + 6) * 3^(6*n + 7/2) / (Pi^(5/2) * n^(35/2)). - Vaclav Kotesovec, Nov 23 2018

A321976 7-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560, 32103104214166146088869942000, 2760171874087743799855959353857200, 289232890341906497299306268771988273600, 35764585916110766978895474668714467232388000
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2018

Keywords

Comments

Number of n X 7 Young tableaux.

Crossrefs

Programs

  • GAP
    List([0..15],n->24883200*Factorial(7*n)/Product([0..6],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
  • Magma
    [24883200*Factorial(7*n) / (Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
    
  • Mathematica
    Table[24883200*(7*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!*(n+6)!),{n,0,15}] (* Vincenzo Librandi, Nov 24 2018 *)
  • PARI
    {a(n) = 24883200*(7*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!*(n+6)!)}
    

Formula

a(n) = 0!*1!*...*6! * (7*n)! / ( n!*(n+1)!*...*(n+6)! ).
a(n) ~ 3110400 * 7^(7*n + 1/2) / (Pi^3 * n^24). - Vaclav Kotesovec, Nov 23 2018

A321977 8-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 1430, 23371634, 1489877926680, 231471904322784840, 67867669180627125604080, 32103104214166146088869942000, 22081374992701950398847674830857600, 20535535214275361308250745082811167425600, 24486819823897171791550434989846505231774984000
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2018

Keywords

Comments

Number of n X 8 Young tableaux.

Crossrefs

Programs

  • GAP
    List([0..15],n->125411328000*Factorial(8*n)/Product([0..7],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
  • Magma
    [125411328000*Factorial(8*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
    
  • Mathematica
    Table[125411328000 (8 n)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)! (n+6)! (n + 7)!), {n, 0, 15}] (* Vincenzo Librandi, Nov 24 2018 *)

Formula

a(n) = 0!*1!*...*7! * (8*n)! / ( n!*(n+1)!*...*(n+7)! ).
a(n) ~ 1913625 * 2^(24*n + 14) / (Pi^(7/2) * n^(63/2)). - Vaclav Kotesovec, Nov 23 2018

A321716 Triangle read by rows: T(n,k) is the number of n X k Young tableaux, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 5, 42, 1, 1, 14, 462, 24024, 1, 1, 42, 6006, 1662804, 701149020, 1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560
Offset: 0

Views

Author

Seiichi Manyama, Nov 17 2018

Keywords

Examples

			T(4,3) = 12! / ((6*5*4)*(5*4*3)*(4*3*2)*(3*2*1)) = 462.
Triangle begins:
  1;
  1, 1;
  1, 1,   2;
  1, 1,   5,    42;
  1, 1,  14,   462,     24024;
  1, 1,  42,  6006,   1662804,    701149020;
  1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960;
		

Crossrefs

Programs

  • Magma
    A321716:= func< n,k | n eq 0 select 1 else Factorial(n*k)/(&*[ Round(Gamma(j+k)/Gamma(j)): j in [1..n]]) >;
    [A321716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2021
    
  • Mathematica
    T[n_, k_]:= (n*k)!/Product[Product[i+j-1, {j,1,k}], {i,1,n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 17 2018 *)
    T[n_, k_]:= (n*k)!*BarnesG[n+1]*BarnesG[k+1]/BarnesG[n+k+1];
    Table[T[n, k], {n, 0, 5}, {k, 0, n}] //Flatten (* G. C. Greubel, May 04 2021 *)
  • Sage
    def A321716(n,k): return factorial(n*k)/product( gamma(j+k)/gamma(j) for j in (1..n) )
    flatten([[A321716(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 04 2021

Formula

T(n, k) = (n*k)! / (Product_{i=1..n} Product_{j=1..k} (i+j-1)).
T(n, k) = A060854(n,k) for n,k > 0.
T(n, n) = A039622(n).
T(n, k) = (n*k)!*BarnesG(n+1)*BarnesG(k+1)/BarnesG(n+k+1), where BarnesG(n) = A000178. - G. C. Greubel, May 04 2021

A321978 9-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 4862, 414315330, 177295473274920, 219738059326729823880, 583692803893929928888544400, 2760171874087743799855959353857200, 20535535214275361308250745082811167425600, 220381378415074546123953914908618547085974856000
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2018

Keywords

Comments

Number of n X 9 Young tableaux.

Crossrefs

Programs

  • GAP
    List([0..10],n->5056584744960000*Factorial(9*n)/Product([0..8],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
  • Magma
    [5056584744960000*Factorial(9*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)*Factorial(n + 8)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
    
  • Mathematica
    Table[5056584744960000 (9 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)! (n + 6)! (n + 7)! (n + 8)!), {n, 0, 15}] (* Vincenzo Librandi, Nov 24 2018 *)

Formula

a(n) = 0!*1!*...*8! * (9*n)! / ( n!*(n+1)!*...*(n+8)! ).
a(n) ~ 16056320000 * 3^(18*n + 10) / (Pi^4 * n^40). - Vaclav Kotesovec, Nov 23 2018
Showing 1-9 of 9 results.