A005845 Bruckman-Lucas pseudoprimes: k | (L_k - 1), where k is composite and L_k = Lucas numbers A000032.
705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281, 34561, 35785, 51841, 54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100065, 100127, 105281, 113573, 118441, 146611, 161027
Offset: 1
References
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 104.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 105.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Somer, Lawrence. "Generalization of a Theorem of Bruckman on Dickson Pseudoprimes." Fibonacci Quarterly 60:4 (2022), 357-361.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site, terms 1..1000 from T. D. Noe)
- Dorin Andrica and Ovidiu Bagdasar, Recurrent Sequences: Key Results, Applications, and Problems, Springer (2020), p. 88.
- Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
- R. Baillie and S. S. Wagstaff, Lucas pseudoprimes, Math. Comp 35 (1980) 1391-1417.
- P. S. Bruckman, Lucas Pseudoprimes are odd, Fib. Quart. 32 (1994), 155-157.
- Dana Jacobsen, Pseudoprime Statistics, Tables, and Data.
- Eric Weisstein's World of Mathematics, Lucas Pseudoprime.
- Index entries for sequences related to pseudoprimes
Crossrefs
Programs
-
Haskell
a005845 n = a005845_list !! (n-1) a005845_list = filter (\x -> (a000032 x - 1) `mod` x == 0) a002808_list -- Reinhard Zumkeller, Nov 13 2014
-
Maple
with(combinat):lucas:=n->fibonacci(n-1)+fibonacci(n+1): test:=n->lucas(n) mod n=1:select(test and not isprime,[seq(n,n=1..10000)]); # Robert FERREOL, Jul 14 2015
-
Mathematica
Select[Range[2,170000],!PrimeQ[#]&&Divisible[LucasL[#]-1,#]&] (* Harvey P. Dale, Mar 08 2014 *)
-
PARI
is(n)=my(M=Mod([1,1;1,0],n)^n);M[1,1]+M[2,2]==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Dec 27 2013
-
Python
from sympy import isprime from itertools import count, islice def agen(): # generator of terms L0, L1 = 2, 1 for k in count(1): L0, L1 = L1, L0+L1 if k > 1 and not isprime(k) and (L0-1)%k == 0: yield k print(list(islice(agen(), 32))) # Michael S. Branicky, Apr 07 2024
Extensions
More terms from David Broadhurst
Comments