cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005845 Bruckman-Lucas pseudoprimes: k | (L_k - 1), where k is composite and L_k = Lucas numbers A000032.

Original entry on oeis.org

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281, 34561, 35785, 51841, 54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100065, 100127, 105281, 113573, 118441, 146611, 161027
Offset: 1

Views

Author

Keywords

Comments

This uses the definition of "Lucas pseudoprime" by Bruckman, not the one by Baillie and Wagstaff. - R. J. Mathar, Jul 15 2012
Unlike the earlier Baillie-Wagstaff Lucas pseudoprimes A217120, these have significant overlap with the Fermat primality test. For example, the number 82380774001 is both an A005845 Lucas pseudoprime and a Fermat pseudoprime to the first 407 prime bases. - Dana Jacobsen, Jan 10 2015
k in A002808 such that A213060(k) = 1. - Robert Israel, Jul 14 2015

References

  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 104.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 105.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Somer, Lawrence. "Generalization of a Theorem of Bruckman on Dickson Pseudoprimes." Fibonacci Quarterly 60:4 (2022), 357-361.

Crossrefs

Cf. A094394, A094395 (analogous numbers with the Fibonacci sequence). - Robert FERREOL, Jul 14 2015
Cf. A213060 (L(n) mod n).

Programs

  • Haskell
    a005845 n = a005845_list !! (n-1)
    a005845_list = filter (\x -> (a000032 x - 1) `mod` x == 0) a002808_list
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Maple
    with(combinat):lucas:=n->fibonacci(n-1)+fibonacci(n+1):
    test:=n->lucas(n) mod n=1:select(test and not isprime,[seq(n,n=1..10000)]); # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[Range[2,170000],!PrimeQ[#]&&Divisible[LucasL[#]-1,#]&] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    is(n)=my(M=Mod([1,1;1,0],n)^n);M[1,1]+M[2,2]==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Dec 27 2013
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        L0, L1 = 2, 1
        for k in count(1):
            L0, L1 = L1, L0+L1
            if k > 1 and not isprime(k) and (L0-1)%k == 0:
                yield k
    print(list(islice(agen(), 32))) # Michael S. Branicky, Apr 07 2024

Extensions

More terms from David Broadhurst