cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005895 Weighted count of partitions with distinct parts.

Original entry on oeis.org

1, 2, 5, 7, 12, 18, 26, 35, 50, 67, 88, 116, 149, 191, 245, 306, 381, 477, 585, 718, 880, 1067, 1288, 1555, 1863, 2226, 2656, 3151, 3726, 4406, 5180, 6077, 7124, 8316, 9691, 11278, 13080, 15146, 17517, 20204, 23264, 26759, 30705, 35182, 40274, 46000, 52473, 59795, 68018, 77279, 87711, 99395, 112508
Offset: 1

Views

Author

Keywords

Comments

Also sum of largest parts of all partitions of n into distinct parts. - Vladeta Jovovic, Feb 15 2004

References

  • Andrews, George E.; Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
  • S.-Y. Kang, Generalizations of Ramanujan's reciprocity theorem..., J. London Math. Soc., 75 (2007), 18-34. See Eq. (1.5) but beware errors.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    M:=201; add( mul( (1+q^j),j=1..M) - mul( (1+q^j),j=1..n), n=0..M);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(
          n=0, 1, b(n,i-1)+`if`(i>n, 0, b(n-i, min(n-i,i-1)))))
        end:
    a:= n-> add(j*b(n-j, min(n-j,j-1)), j=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016
  • Mathematica
    m = 46; f[q_] :=  Sum[ Product[ (1+q^j), {j, 1, m}] - Product[ (1+q^j), {j, 1, n}], {n, 0, m}]; CoefficientList[ f[q], q][[2 ;; m+1]] (* Jean-François Alcover, Apr 13 2012, after Maple *)
  • PARI
    N=66;  x='x+O('x^N);
    S=prod(k=1,N, 1+x^k); gf=sum(n=0,N, S-prod(k=1,n, 1+x^k));
    /* alternative: Arndt's g.f.: */
    /* gf=sum(k=0,N, (k+1)*x^(k+1) * prod(j=1,k, 1+x^j) ); */
    Vec(gf)
    /* Joerg Arndt, Sep 17 2012 */

Formula

G.f.: sum(n>=0, S(q) - prod(k=1..n, 1+q^k) ), where S(q)=prod(k>=1, 1+q^k) (g.f. for A000009).
G.f. sum(k>=0, (k+1)*x^(k+1) * prod(j=1..k, 1+x^j) ). [Joerg Arndt, Sep 17 2012]

Extensions

More terms from James Sellers, Dec 24 1999