cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003406 Expansion of Ramanujan's function R(x) = 1 + Sum_{n >= 1} { x^(n*(n+1)/2) / ((1+x)(1+x^2)(1+x^3)...(1+x^n)) }.

Original entry on oeis.org

1, 1, -1, 2, -2, 1, 0, 1, -2, 0, 2, 0, -1, -2, 2, 1, 0, -2, 2, -2, 0, 0, 3, 0, -2, -2, 1, 0, 2, 0, 0, 0, -2, 0, 0, 1, 0, 0, 0, 2, -1, 0, -2, -2, 0, 4, 0, 2, -2, 0, -2, -1, 2, 0, -2, 2, 0, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, -2, 4, 2, -1, 0, 0, -2, -2, -2, 2, 1, 2, 0, 0, 0, 0, -2, 2, 0, 0, -2, 2, -2, -2, 0, 3, 0, 0, 2, 0, 0, 0, -2, 1, -2, 0, -2, 0
Offset: 0

Views

Author

Keywords

Comments

a(n) = A117192(n) - A117193(n) for n>0 (number of partitions into distinct parts with even rank minus those with odd rank); see also A000025. - Reinhard Zumkeller, Mar 03 2006
Ramanujan showed that R(x) = 2*Sum_{n>=0} (S(x) - P(n,x)) - 2*S(x)*D(x), where P(n,x) = Product_{k=1..n} (1+x^k), S(x) = g.f. A000009 = P(oo,x) and D(x) = -1/2 + Sum_{n>=1} x^n/(1-x^n) = -1/2 + g.f. A000005. - Michael Somos

Examples

			1 + x - x^2 + 2*x^3 - 2*x^4 + x^5 + x^7 - 2*x^8 + 2*x^10 - x^12 - 2*x^13 + ...
q + q^25 - q^49 + 2*q^73 - 2*q^97 + q^121 + q^169 - 2*q^193 + 2*q^241 - ...
		

References

  • G. E. Andrews, Ramanujan's "lost" notebook V: Euler's partition identity, Adv. in Math. 61 (1986), no. 2, 156-164; Math. Rev. 87i:11137. [ The expansion in (2.8) is incorrect. ]
  • F. J. Dyson, A walk through Ramanujan's garden, pp. 7-28 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • F. J. Dyson, Selected Papers, Am. Math. Soc., 1996, p. 200.
  • B. Gordon and D. Sinor, Multiplicative properties of eta-products, Number theory, Madras 1987, pp. 173-200, Lecture Notes in Math., 1395, Springer, Berlin, 1989. see page 182. MR1019331 (90k:11050)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g:=1+sum(x^(n*(n+1)/2)/product(1+x^j,j=1..n),n=1..20): gser:=series(g,x=0,110): seq(coeff(gser,x,n),n=0..104); # Emeric Deutsch, Mar 30 2006
    t1:= add( (-1)^n*q^(n*(3*n+1)/2)*(1-q^(2*n+1))* add( (-1)^j*q^(-j^2),j=-n..n), n=0..20); t2:=series(t1,q,40); # N. J. A. Sloane, Jun 27 2011
  • Mathematica
    max = 105; f[x_] := 1 + Sum[ x^(n*(n+1)/2) / Product[ 1+x^j, {j, 1, n}], {n, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 02 2011 *)
    max = 105; s = 1 + Sum[2*q^(n*(n+1)/2)/QPochhammer[-1, q, n+1], {n, 1, Ceiling[Sqrt[2 max]]}] + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = local(t); if( n<0, 0, t = 1 + O(x^n); polcoeff( sum( k=1, n, t *= if( k>1, x^k - x, x) + O(x^(n-k+2)), 1), n))} /* Michael Somos, Mar 07 2006 */
    
  • PARI
    {a(n) = local(t); if( n<0, 0, t = 1 + O(x^n); polcoeff( sum( k=1, (sqrtint(8*n + 1)-1)\2, t *= x^k / (1 + x^k) + x * O(x^(n - (k^2-k)/2)), 1), n))} /* Michael Somos, Aug 17 2006 */
    
  • PARI
    {a(n) = local(A, p, e, x, y); if( n<0, 0, n = 24*n+1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p<5, 0, if( p%24>1 && p%24<23, if(e%2, 0, if( p%24==7 || p%24==17, (-1)^(e/2), 1)), x=y=0; if( p%24==1, forstep(i=1, sqrtint(p), 2, if( issquare( (i^2+p)/2, &y), x=i; break)), for( i=1, sqrtint(p\2), if( issquare(2*i^2 + p, &x), y=i; break))); (e+1)*(-1)^( (x + if((x-y)%6, y, -y))/6*e))))))} /* Michael Somos, Aug 17 2006 */

Formula

G.f.: 1 - Sum_{n > 0} (-x)^n * (1 - x) * (1 - x^2) * ... * (1 -x^(n-1)).
G.f.: 1 + Sum_{n>=1}(x^(n(n+1)/2)/Product_{j=1..n}(1+x^j)). - Emeric Deutsch, Mar 30 2006
Define c(24*k + 1) = A003406(k), c(24*k - 1) = -2*A003475(k), c(n) = 0 otherwise. Then c(n) is multiplicative with c(2^e) = c(3^e) = 0^e, c(p^e) = (-1)^(e/2) * (1+(-1)^e)/2 if p == 7, 17 (mod 24), c(p^e) = (1+(-1)^e)/2 if p == 5, 11, 13, 19 (mod 24), c(p^e) = (e+1)*(-1)^(y*e) where p == 1, 23 (mod 24) and p = x^2 - 72*y^2 . - Michael Somos, Aug 17 2006
Also R(x) = -2 + Sum_{n>=0} (n+1)*x^(n(n-1)/2)/(Product_{k=1..n} (1+x^k)). - Paul D. Hanna, May 22 2010

A092265 Sum of smallest parts of all partitions of n into distinct parts.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 14, 16, 23, 26, 34, 40, 50, 58, 74, 83, 102, 120, 142, 164, 198, 226, 266, 308, 359, 412, 482, 548, 634, 730, 834, 950, 1094, 1240, 1416, 1609, 1826, 2068, 2350, 2648, 2994, 3382, 3806, 4280, 4826, 5408, 6070, 6806, 7619, 8522, 9534, 10632
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n,i+1)+b(n-i, i+1)))
        end:
    a:= n-> add(j*b(n-j, j+1), j=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i + 1] + b[n - i, i + 1]]]; a[n_] := Sum[j*b[n - j, j + 1], {j, 1, n}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{n >= 1} (-1 + Product_{k >= n} 1 + x^k).
G.f.: Sum_{n >= 1} n*x^n*Product_{k >= n+1} (1 + x^k). - Joerg Arndt, Jan 29 2011
G.f.: Sum_{k >= 1} x^(k*(k+1)/2)/(1 - x^k)/Product_{i = 1..k} (1 - x^i). - Vladeta Jovovic, Aug 10 2004
Conjecture: a(n) = A034296(n) + A237665(n+1). - George Beck, May 06 2017
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A336902 Sum of the smallest parts of all compositions of n into distinct parts.

Original entry on oeis.org

0, 1, 2, 5, 6, 11, 18, 25, 32, 53, 84, 107, 156, 205, 302, 497, 618, 863, 1206, 1597, 2228, 3569, 4440, 6191, 8256, 11329, 14642, 20477, 30390, 38555, 52578, 69625, 92696, 122141, 160500, 211955, 310476, 386941, 521102, 678617, 901386, 1155383, 1529742, 1940749
Offset: 0

Views

Author

Alois P. Heinz, Aug 07 2020

Keywords

Examples

			a(6) = 18 = 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 1 + 6: (1)23, (1)32, 2(1)3, 23(1), 3(1)2, 32(1), (2)4, 4(2), (1)5, 5(1), (6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n || i < 1, 0,
         If[i == n, i*p!, b[n-i, Min[n-i, i-1], p+1]] + b[n, i-1, p]];
    a[n_] := b[n, n, 1];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)

Formula

a(n) == n (mod 2).

A336903 Sum of the largest parts of all compositions of n into distinct parts.

Original entry on oeis.org

0, 1, 2, 7, 10, 19, 42, 61, 98, 151, 304, 403, 654, 925, 1400, 2431, 3328, 4903, 7056, 10117, 13952, 23419, 30406, 44683, 61308, 87289, 116822, 164359, 247774, 327715, 457542, 624445, 855062, 1148023, 1559188, 2058643, 3043506, 3906637, 5375732, 7111975, 9679852
Offset: 0

Views

Author

Alois P. Heinz, Aug 07 2020

Keywords

Examples

			a(6) = 42 = 3 + 3 + 3 + 3 + 3 + 3 + 4 + 4 + 5 + 5 + 6: 12(3), 1(3)2, 21(3), 2(3)1, (3)12, (3)21, 2(4), (4)2, 1(5), (5)1, (6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 `if`(n=0, 0, b(n$2, 0)):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i + 1)/2 < n, 0,
         If[n == 0, p!, b[n - i, Min[n - i, i - 1], p + 1]*
         If[p == 0, i, 1] + b[n, i - 1, p]]];
    a[n_] := If[n == 0, 0, b[n, n, 0]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)

Formula

a(n) == n (mod 2).

A092316 Sum of largest parts of all partitions of n into odd distinct parts.

Original entry on oeis.org

1, 0, 3, 3, 5, 5, 7, 12, 14, 16, 18, 27, 29, 33, 42, 55, 59, 65, 78, 95, 110, 118, 137, 167, 188, 200, 236, 274, 303, 330, 376, 435, 485, 522, 591, 677, 741, 803, 903, 1022, 1115, 1210, 1345, 1505, 1650, 1784, 1964, 2201, 2393, 2578, 2843, 3143, 3409, 3685, 4034
Offset: 1

Views

Author

Vladeta Jovovic, Feb 15 2004

Keywords

Examples

			a(13) = 29 because the partitions of 13 into distinct odd parts are [13],[9,3,1] and [7,5,1], with sum of largest terms 13+9+7 = 29.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1 or i^2 `if`(t>n, 0, b(n-t, i-1)))(2*i-1) ))
        end:
    a:= n-> add(`if`(j::odd, j*b(n-j, (j-1)/2), 0), j=1..n):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jan 19 2022
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j - 1), {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *)

Formula

G.f.: Sum_{n>=1} (2*n-1)*x^(2*n-1)*Product_{k=1..n-1} (1+x^(2*k-1)).
a(n) = 2 * A067619(n) - A000700(n). - Seiichi Manyama, Jan 19 2022

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A005896 Weighted count of partitions with odd parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 7, 9, 14, 19, 26, 34, 45, 59, 76, 96, 121, 153, 189, 234, 288, 353, 428, 519, 625, 752, 900, 1073, 1274, 1512, 1784, 2101, 2470, 2894, 3382, 3946, 4590, 5330, 6179, 7144, 8246, 9505, 10931, 12552, 14396, 16476, 18831, 21495
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 9*x^8 + 14*x^9 + 19*x^10 + ... - _Michael Somos_, Oct 21 2018
		

References

  • Andrews, George E. Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 48; f[n_, x_] := Product[ 1/(1-x^(2k+1)), {k, 0, n}]; g[x_] = Sum[ f[max/2, x] - f[n, x], {n, 0, max/2}]; CoefficientList[ Series[ g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 17 2011, after g.f. *)
    a[ n_] := With[{A = 1 / QPochhammer[ q, q^2]}, SeriesCoefficient[ Sum[A - 1 / QPochhammer[ q, q^2, k], {k, 1, n/2}], {q, 0, n}]]; (* Michael Somos, Oct 21 2018 *)
  • PARI
    /* set maximum */ MM = 50; /* G.f. for partitions with odd parts: */ (Q(n, q) = prod(k=0, n, 1/(1 - q^(2*k+1)), 1 + q*O(q^MM))); /* G.f. for A000009: */ Sq = Q(MM/2, q); /* G.f. for A005896: */ Sq0 = sum(n=0, MM/2, Sq-Q(n, q)); for(n=0, 48, print1(polcoeff(Sq0, n)","));

Formula

G.f.: Sum_{n=0..infinity} {S(q)-1/((1-q)(1-q^3)...(1-q^(2n+1)))}, where S(q) = g.f. for A000009.

Extensions

More terms from Michael Somos.

A117455 Sum of the differences between the largest part and smallest part over all partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 12, 19, 27, 41, 54, 76, 99, 133, 171, 223, 279, 357, 443, 554, 682, 841, 1022, 1247, 1504, 1814, 2174, 2603, 3092, 3676, 4346, 5127, 6030, 7076, 8275, 9669, 11254, 13078, 15167, 17556, 20270, 23377, 26899, 30902, 35448, 40592, 46403
Offset: 1

Views

Author

Emeric Deutsch, Mar 18 2006

Keywords

Comments

a(n) = sum(k*A117454(n,k), k=0..n-2).
a(n) = A005895(n)-A092265(n). - Alois P. Heinz, Jul 06 2012

Examples

			a(7)=12 because the partitions of 7 into distinct parts are [7], [6,1], [5,2], [4,3] and [4,2,1] and (7-7)+(6-1)+(5-2)+(4-3)+(4-1)=12.
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(i*(i+1)/2)*sum(1/(1-x^j),j=1..i-1)/product(1-x^j,j=1..i),i=1..15): gser:=series(g,x=0,55): seq(coeff(gser,x^n), n=1..50);
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(i=n, n, 0)+`if`(i>0, b(n, i-1)+
          `if`(i g(n, 1) -b(n, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 06 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[i==n, n, 0] + If[i>0, b[n, i-1] + If[iJean-François Alcover, Mar 24 2015, after Alois P. Heinz *)

Formula

G.f.: sum(x^(i(i+1)/2)*sum(1/(1-x^j), j=1..i-1)/product(1-x^j, j=1..i), i=1..infinity) (obtained by taking the derivative with respect to t of the g.f. G(t,x) of A117454 and letting t=1).
Showing 1-7 of 7 results.