cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A006140 Erroneous version of A003406.

Original entry on oeis.org

1, 1, -2, 2, -2, 1, 0, 1, -2, 0, 2, 0, -1, -2, 2, 1, 0, -2, 2, -2
Offset: 0

Views

Author

Keywords

A158690 Expansion of the basic hypergeometric series 1 + (1 - exp(-t)) + (1 - exp(-t))*(1 - exp(-3*t)) + (1 - exp(-t))*(1 - exp(-3*t))*(1 - exp(-5*t)) + ... as a series in t.

Original entry on oeis.org

1, 1, 5, 55, 1073, 32671, 1431665, 85363615, 6646603073, 654896692351, 79656194515025, 11722538113191775, 2052949879753739873, 421931472111868912831, 100568330857984368195185
Offset: 0

Views

Author

Peter Bala, Mar 24 2009

Keywords

Comments

We appear to get the same sequence by expanding 1 - (1 - exp(t)) + (1 - exp(t))*(1 - exp(2*t)) - (1 - exp(t))*(1 - exp(2*t))*(1 - exp(3*t)) + ... as a series in t. Compare with A079144. For other sequences with generating functions of a similar type see A000364, A000464, A002105 and A002439.
From Peter Bala, Mar 13 2017: (Start)
It appears that the g.f. has two other forms: either F(exp(-t)) where F(q) = Sum_{n >= 0} q^(n+1)*Product_{k = 1..n} 1 - q^(2*k) = q + q^2 + q^3 - q^7 - q^8 - q^10 - q^11 - ... is a g.f. for A003475 or 1/2*G(exp(t)) where G(q) = 1 + Sum_{n >= 0} (-1)^n*q^(n+1)*Product_{k = 1..n} 1 - q^k = 1 + q - q^2 + 2*q^3 - 2*q^4 + q^5 + q^7 - 2*q^8 + ... is a g.f. for A003406. See Zagier, Example 1. (End)
From Peter Bala, Dec 18 2021: (Start)
Conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 16 begins [1, 1, 5, 7, 1, 15, 1, 15, 1, 15, 1, 15, ...] with an apparent pre-period of length 4 and a period of length 2.
2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k.
If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients. For example, the expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 21*x^3 + 291*x^4 + 6861*x^5 + 246171*x^6 + 12458901*x^7 + 843915891*x^8 + 73640674461*x^9 + 8041227405771*x^10 + ... appears to have integer coefficients. (End)

Examples

			G.f. A(x) = 1 + x + 5*x^2 + 55*x^3 + 1073*x^4 + 32671*x^5 + 1431665*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    max = 14; se = Series[1 + Sum[ Product[1 - E^(-(2*k - 1)*t), {k, 1, n}], {n, 1, max}], {t, 0, max}]; CoefficientList[se, t]*Range[0, max]! (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, 1-exp(-(2*k-1)*x+x*O(x^n)))), n)} \\ Paul D. Hanna, Aug 01 2012
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, exp(k*x+x*O(x^n))-1)), n)} \\ Paul D. Hanna, Aug 01 2012

Formula

Basic hypergeometric generating function: 1 + Sum_{n >= 0} Product_{k = 1..n} (1 - exp(2*k-1)*t) = 1 + t + 5*t^2/2! + 55*t^3/3! + ....
a(n) ~ 6*sqrt(2) * 12^n * (n!)^2 / Pi^(2*n+2). - Vaclav Kotesovec, May 04 2014
Conjectural g.f.: G(exp(t)) as a formal power series in t, where G(q) := Sum_{n >= 0} q^(2*n+1) * Product_{k = 1..2*n} (1 - q^k). - Peter Bala, May 16 2017
E.g.f.: Sum_{n>=0} exp(n*(n+1)/2*x) / Product_{k=0..n} (1 + exp(k*x)). - Paul D. Hanna, Oct 14 2020

A117193 Number of partitions of n into distinct parts with an odd rank.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 2, 4, 4, 4, 6, 8, 10, 10, 13, 16, 20, 22, 28, 32, 38, 43, 52, 62, 72, 82, 96, 110, 128, 148, 170, 196, 224, 256, 292, 334, 380, 432, 490, 557, 630, 714, 806, 908, 1022, 1152, 1294, 1456, 1632, 1830, 2049, 2290, 2560, 2860, 3188, 3554, 3958, 4404
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 03 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[IntegerPartitions[n], q_ /; OddQ[First[q] - Length[q]] && Length[q] == Length[Union[q]]];
    Array[a, 60] (* Jean-François Alcover, Oct 06 2021 *)

Formula

a(n) = Sum(A117195(n,k)*(k mod 2): 0<=k
a(n) = A000009(n) - A117192(n).
a(n) = A117192(n) - A003406(n).

A117192 Number of partitions of n into distinct parts with an even rank.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 3, 2, 4, 6, 6, 7, 8, 12, 14, 16, 18, 24, 26, 32, 38, 46, 52, 60, 70, 83, 96, 112, 128, 148, 170, 194, 224, 256, 293, 334, 380, 432, 492, 556, 630, 712, 804, 908, 1026, 1152, 1296, 1454, 1632, 1828, 2048, 2292, 2560, 2858, 3190, 3554, 3959, 4404
Offset: 1

Author

Reinhard Zumkeller, Mar 03 2006

Keywords

Programs

  • Mathematica
    a[n_] := Count[IntegerPartitions[n], q_ /; EvenQ[First[q] - Length[q]] && Length[q] == Length[Union[q]]];
    Array[a, 60] (* Jean-François Alcover, Oct 06 2021 *)

Formula

a(n) = Sum(A117195(n,k)*(1 - k mod 2): 0<=k
a(n) = A117194(n)+A010054(n) = A000009(n)-A117193(n) = A117193(n)+A003406(n).

A005895 Weighted count of partitions with distinct parts.

Original entry on oeis.org

1, 2, 5, 7, 12, 18, 26, 35, 50, 67, 88, 116, 149, 191, 245, 306, 381, 477, 585, 718, 880, 1067, 1288, 1555, 1863, 2226, 2656, 3151, 3726, 4406, 5180, 6077, 7124, 8316, 9691, 11278, 13080, 15146, 17517, 20204, 23264, 26759, 30705, 35182, 40274, 46000, 52473, 59795, 68018, 77279, 87711, 99395, 112508
Offset: 1

Keywords

Comments

Also sum of largest parts of all partitions of n into distinct parts. - Vladeta Jovovic, Feb 15 2004

References

  • Andrews, George E.; Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
  • S.-Y. Kang, Generalizations of Ramanujan's reciprocity theorem..., J. London Math. Soc., 75 (2007), 18-34. See Eq. (1.5) but beware errors.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    M:=201; add( mul( (1+q^j),j=1..M) - mul( (1+q^j),j=1..n), n=0..M);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(
          n=0, 1, b(n,i-1)+`if`(i>n, 0, b(n-i, min(n-i,i-1)))))
        end:
    a:= n-> add(j*b(n-j, min(n-j,j-1)), j=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016
  • Mathematica
    m = 46; f[q_] :=  Sum[ Product[ (1+q^j), {j, 1, m}] - Product[ (1+q^j), {j, 1, n}], {n, 0, m}]; CoefficientList[ f[q], q][[2 ;; m+1]] (* Jean-François Alcover, Apr 13 2012, after Maple *)
  • PARI
    N=66;  x='x+O('x^N);
    S=prod(k=1,N, 1+x^k); gf=sum(n=0,N, S-prod(k=1,n, 1+x^k));
    /* alternative: Arndt's g.f.: */
    /* gf=sum(k=0,N, (k+1)*x^(k+1) * prod(j=1,k, 1+x^j) ); */
    Vec(gf)
    /* Joerg Arndt, Sep 17 2012 */

Formula

G.f.: sum(n>=0, S(q) - prod(k=1..n, 1+q^k) ), where S(q)=prod(k>=1, 1+q^k) (g.f. for A000009).
G.f. sum(k>=0, (k+1)*x^(k+1) * prod(j=1..k, 1+x^j) ). [Joerg Arndt, Sep 17 2012]

Extensions

More terms from James Sellers, Dec 24 1999

A003475 Expansion of Sum_{k>0} (-1)^(k+1) q^(k^2) / ((1-q)(1-q^3)(1-q^5)...(1-q^(2k-1))).

Original entry on oeis.org

1, 1, 1, 0, 0, 0, -1, -1, 0, -1, -1, 0, -1, 0, 1, -1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 1, -1, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, -1, -1, 1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 1, 0, 1, 1, 0, 1, -1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, -1, -2, 0, 0, -1, 0, 1, 0, -1, -1, -1, 0, 0, 0
Offset: 1

Keywords

Comments

|a(n)|<3 if n<1036, a(1036)=3. - Michael Somos, Sep 16 2006

Examples

			G.f. = x + x^2 + x^3 - x^7 - x^8 - x^10 - x^11 - x^13 + x^15 - x^16 + ...
		

References

  • F. J. Dyson, A walk through Ramanujan's garden, pp. 7-28 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • F. J. Dyson, Selected Papers, Am. Math. Soc., 1996, p. 204.

Crossrefs

Programs

  • Maple
    P:=n->mul((1-q^(2*i+1)),i=0..n-1):
    t5:=add((-1)^(n+1)*q^(n^2)/P(n),n=1..40):
    t6:=series(t5,q,40); # Based on Patkowski, 2010, Eq. 3.1. - N. J. A. Sloane, Jun 29 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 - QHypergeometricPFQ[ {x^2}, {x}, x^2, x], {x, 0, n}]; (* Michael Somos, Feb 02 2015 *)
  • PARI
    {a(n) = local(A, p, e, x, y); if( n<0, 0, n = 24*n-1; A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p<5, 0, if( p%24>1 && p%24<23, if( e%2, 0, if( p%24==7 || p%24==17, (-1)^(e/2), 1)), x=y=0; if( p%24==1, forstep(i=1, sqrtint(p), 2, if( issquare( (i^2 + p) / 2, &y), x=i; break)), for(i=1, sqrtint(p\2), if( issquare( 2*i^2 + p,&x), y=i; break))); (e+1) * (-1)^( (x + if((x-y)%6, y, -y)) / 6*e))))) / -2)}; /* Michael Somos, Aug 17 2006 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, A = -1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), A *= 1 / (1 - x^(1 - 2*k)) * (1 + x * O(x^(n - k^2)))), n))}; /* Michael Somos, Sep 16 2006 */

Formula

Define c(24*k + 1) = A003406(k), c(24*k - 1) = -2*A003475(k), c(n) = 0 otherwise. Then c(n) is multiplicative with c(2^e) = c(3^e) = 0^e, c(p^e) = (-1)^(e/2) * (1 + (-1)^e) / 2 if p == 7, 17 (mod 24), c(p^e) = (1 + (-1)^e) / 2 if p == 5, 11, 13, 19 (mod 24), c(p^e) = (e+1)*(-1)^(y*e) where p == 1, 23 (mod 24) and p = x^2 - 72*y^2 . - Michael Somos, Aug 17 2006
G.f.: x + x^2 * (1 - x^2) + x^3 * (1 - x^2) * (1 - x^4) + x^4 * (1 - x^2) * (1 - x^4) * (1 - x^6) + ... . - Michael Somos, Aug 18 2006

A291954 Triangle read by rows: T(n,k) = T(n-k,k-1) - T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, -1, 0, 1, 1, 0, -1, -1, 0, 1, 0, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, -1, 0, 0, 1, 0, -1, 0, -1, 0, 2, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 0, 0, 1, 0, -2, -1, 0, -1, 0, 2, 1, 0, 1, 1, -2, 0, 1, 0, -1, -1, 2, 1, -1, 0, 1, 0, -2, -1, 0, 0, -1, 0, 3, 1, -1, 0, 1
Offset: 0

Author

Seiichi Manyama, Sep 06 2017

Keywords

Examples

			First few rows are:
  1;
  0,  1;
  0, -1;
  0,  1,  1;
  0, -1, -1;
  0,  1,  0;
  0, -1,  0,  1;
  0,  1,  1, -1;
  0, -1, -1,  0;
  0,  1,  0, -1;
  0, -1,  0,  2, 1.
		

Crossrefs

Row sums give A003406.
Columns 0-1 give A000007, A062157.

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1+x^j).

A203568 a(n) = A026837(n) - A026838(n).

Original entry on oeis.org

0, 1, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0
Offset: 0

Author

Michael Somos, Jan 03 2012

Keywords

Examples

			G.f. = x - x^2 + x^5 - x^7 + x^12 - x^15 + x^22 - x^26 + x^35 - x^40 + x^51 - ...
G.f. = q^25 - q^49 + q^121 - q^169 + q^289 - q^361 + q^529 - q^625 + ..
From _Peter Bala_, Feb 13 2020: (Start)
G.f.s for the tails of A(x):
Sum_{n >= 1} (-1)^(n+1) * x^(2*n+3)*Product_{k = 2..n} 1 + x^k = x^5 - x^7 + x^12 - x^15 + x^22 - ....
Sum_{n >= 2} (-1)^n * x^(3*n+6)*Product_{k = 3..n} 1 + x^k = x^12 - x^15 + x^22 - x^26 + x^35 - ....
Sum_{n >= 3} (-1)^(n+1) * x^(4*n+10)*Product_{k = 4..n} 1 + x^k =
x^22 - x^26 + x^35 - x^40 + x^51 - .... (End)
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(0) to a(N)
    V:= Array(0..N):
    for k from 1 to floor((sqrt(1+24*N)-1)/6) do V[(3*k^2-k)/2]:= 1 od:
    for k from 1 to floor((sqrt(1+24*N)+1)/6) do V[(3*k^2+k)/2]:= -1 od:
    convert(V,list); # Robert Israel, Nov 24 2015
  • Mathematica
    a[ n_] := Which[ n < 1, 0, SquaresR[ 1, 24 n + 1] == 2, -(-1)^Quotient[ Sqrt[24 n + 1], 3], True, 0]; (* Michael Somos, Jul 12 2015 *)
  • PARI
    {a(n) = if( n<1, 0, if( issquare( 24*n + 1, &n), - kronecker( -12, n)))};

Formula

G.f.: Sum_{k in Z} sign(k) * x^(k * (3*k - 1) / 2).
G.f.: Sum_{k>0} x^(k * (3*k - 1) / 2) * (1 - x^k). - Michael Somos, Jul 12 2015
G.f.: x - x^2 * (1 + x) + x^3 * (1 + x) * (1 + x^2) - x^4 * (1 + x) * (1 + x^2) * (1 + x^3) + .... - Michael Somos, Jul 12 2015
G.f.: x / (1 + x) - x^3 / ((1 + x) * (1 + x^2)) + x^6 / ((1 + x) * (1 + x^2) * (1 + x^3)) - .... - Michael Somos, Jul 12 2015
G.f.: x / (1 + x^2) - x^2 / ((1 + x^2) * (1 + x^4)) + x^3 / ((1 + x^2 ) * (1 + x^4) * (1 + x^6)) - .... - Michael Somos, Jul 12 2015
a(n) = - A143062(n) unless n=0. - Michael Somos, Jul 12 2015
For k >= 1, a((3*k^2 - k)/2) = 1, a((3*k^2 + k)/2) = -1. a(n) = 0 otherwise. - Robert Israel, Nov 24 2015
From Peter Bala, Feb 11 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n*(2*n-1))/Product_{k = 1..2*n} 1 + x^k = x - x^2 + x^5 - x^7 + x^12 - x^15 + - ..., follows by adding terms in pairs in the above g.f. Sum_{n >= 1} (-1)^(n+1)*x^(n*(n+1)/2)/Product_{k = 1..n} 1 + x^k of Somos, dated Jul 12 2015.
G.f.: A(x) = 1/2 + (1/2)*Sum_{n >= 1} (-1)^n*x^(n*(n-1)/2)/Product_{k = 1..n} 1 + x^k.
A(x) = Sum_{n >= 0} (-1)^n * x^(n+1)*Product_{k = 1..n} 1 + x^k. (Set x = -1 in Andrews, equation 8. For similar results see the Examples below.)
Conjectural g.f: A(x) = Sum_{n >= 1} (-1)^(n+1) * x^(2*n-1)/Product_{k = 1..n} 1 + x^(2*k-1) = x - x^2 + x^5 - x^7 + x^12 - x^15 + - ....
More generally, for positive integer N, we appear to have the identity
A(x) = Product_{j = 1..N-1} 1/(1 + x^(2*j)) * ( P(N,x) + Sum_{n >= 1} (-1)^(n+N) * x^(2*N*n-N)/Product_{k = 1..n} 1 + x^(2*k-1) ), where P(N,x) is a polynomial in x of degree N^2 - N - 1 for N > 1, with the first few values given empirically by P(1,x) = 0, P(2,x) = x, P(3,x) = x - x^2 + x^5 and P(4,x) = x - x^2 + x^3 + x^5 + x^7 - x^8 + x^11. Cf. A186424. (End)

A005896 Weighted count of partitions with odd parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 7, 9, 14, 19, 26, 34, 45, 59, 76, 96, 121, 153, 189, 234, 288, 353, 428, 519, 625, 752, 900, 1073, 1274, 1512, 1784, 2101, 2470, 2894, 3382, 3946, 4590, 5330, 6179, 7144, 8246, 9505, 10931, 12552, 14396, 16476, 18831, 21495
Offset: 0

Keywords

Examples

			G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 9*x^8 + 14*x^9 + 19*x^10 + ... - _Michael Somos_, Oct 21 2018
		

References

  • Andrews, George E. Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 48; f[n_, x_] := Product[ 1/(1-x^(2k+1)), {k, 0, n}]; g[x_] = Sum[ f[max/2, x] - f[n, x], {n, 0, max/2}]; CoefficientList[ Series[ g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 17 2011, after g.f. *)
    a[ n_] := With[{A = 1 / QPochhammer[ q, q^2]}, SeriesCoefficient[ Sum[A - 1 / QPochhammer[ q, q^2, k], {k, 1, n/2}], {q, 0, n}]]; (* Michael Somos, Oct 21 2018 *)
  • PARI
    /* set maximum */ MM = 50; /* G.f. for partitions with odd parts: */ (Q(n, q) = prod(k=0, n, 1/(1 - q^(2*k+1)), 1 + q*O(q^MM))); /* G.f. for A000009: */ Sq = Q(MM/2, q); /* G.f. for A005896: */ Sq0 = sum(n=0, MM/2, Sq-Q(n, q)); for(n=0, 48, print1(polcoeff(Sq0, n)","));

Formula

G.f.: Sum_{n=0..infinity} {S(q)-1/((1-q)(1-q^3)...(1-q^(2n+1)))}, where S(q) = g.f. for A000009.

Extensions

More terms from Michael Somos.

A121372 Triangle, read by rows of length A003056(n) for n >= 1, defined by the recurrence: T(n,k) = T(n-k,k-1) - T(n-k,k) for n > k > 1, with T(n,1) =(-1)^(n-1) for n >= 1.

Original entry on oeis.org

1, -1, 1, 1, -1, -1, 1, 0, -1, 0, 1, 1, 1, -1, -1, -1, 0, 1, 0, -1, -1, 0, 2, 1, 1, 1, -1, -1, -1, -1, 1, 0, 1, 0, -2, -1, -1, 0, 2, 1, 1, 1, -2, 0, 1, -1, -1, 2, 1, -1, 1, 0, -2, -1, 0, -1, 0, 3, 1, -1, 1, 1, -3, -2, 1, -1, -1, 2, 1, -1, 1, 0, -3, -1, 2, 1, -1, 0, 4, 2, -1, -1, 1, 1, -3, -1, 2, 0, -1, -1, 3, 1, -3, -1, 1, 0, -4, -2, 2, 1, -1, 0, 4, 2, -3
Offset: 1

Author

Paul D. Hanna, Jul 24 2006

Keywords

Comments

Row sums equal A003406 (offset 1), the expansion of Ramanujan's function: R(x) = 1 + Sum_{n>=1} (x^(n*(n+1)/2) / ((1+x)(1+x^2)(1+x^3)...(1+x^n))).

Examples

			Triangle begins:
   1;
  -1;
   1,  1;
  -1, -1;
   1,  0;
  -1,  0,  1;
   1,  1, -1;
  -1, -1,  0;
   1,  0, -1;
  -1,  0,  2,  1;
   1,  1, -1, -1;
  -1, -1,  1,  0;
   1,  0, -2, -1;
  -1,  0,  2,  1;
   1,  1, -2,  0,  1;
  -1, -1,  2,  1, -1;
   1,  0, -2, -1,  0;
  -1,  0,  3,  1, -1;
   1,  1, -3, -2,  1;
  -1, -1,  2,  1, -1;
   1,  0, -3, -1,  2,  1;
  -1,  0,  4,  2, -1, -1;
   1,  1, -3, -1,  2,  0;
  -1, -1,  3,  1, -3, -1;
   1,  0, -4, -2,  2,  1;
  -1,  0,  4,  2, -3, -1;
   1,  1, -4, -2,  3,  1;
  -1, -1,  4,  2, -3,  0,  1;
   1,  0, -4, -2,  4,  2, -1;
  -1,  0,  5,  2, -4, -2,  0;
   1,  1, -5, -2,  5,  1, -1;
  -1, -1,  4,  2, -5, -2,  1;
   1,  0, -5, -2,  5,  2, -1;
  -1,  0,  6,  3, -6, -3,  1;
   1,  1, -5, -3,  6,  2, -1;
  -1, -1,  5,  2, -7, -2,  3,  1;
  ...
		

Crossrefs

Programs

  • PARI
    {T(n, k)=if(n
    				
  • PARI
    /* Using generating formula for columns */
    {tr(n) = floor((sqrt(1+8*n)-1)/2)} \\ number of terms in row n
    {T(n,k) = polcoeff( x^(k*(k+1)/2) / prod(j=1,k, 1 + x^j +x*O(x^n)), n)}
    {for(n=1,50, for(k=1, tr(n), print1(T(n,k),", "));print(""))} \\ Paul D. Hanna, Jan 28 2024

Formula

G.f. of column k: x^(k*(k+1)/2) / ((1+x)(1+x^2)(1+x^3)...(1+x^k)) for k >= 1.
Showing 1-10 of 13 results. Next