cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005906 Truncated tetrahedral numbers: a(n) = (1/6)*(n+1)*(23*n^2 + 19*n + 6).

Original entry on oeis.org

1, 16, 68, 180, 375, 676, 1106, 1688, 2445, 3400, 4576, 5996, 7683, 9660, 11950, 14576, 17561, 20928, 24700, 28900, 33551, 38676, 44298, 50440, 57125, 64376, 72216, 80668, 89755, 99500, 109926, 121056, 132913, 145520, 158900, 173076
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of 4-element subsets of {-n,...,0,...,n} having sum n. - Clark Kimberling, Apr 05 2012

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus (Springer imprint), New York: Springer-Verlag, 1996, ch. 2, pp. 46-47. (In the formula it should read Tet_{3*n-2} not Tet_{3*n-3}).
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292.

Programs

  • Magma
    [n*(23*n^2 -27*n +10)/6: n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Maple
    A005906:=(1+12*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
    A005906:=n->(1/6)*(n+1)*(23*n^2+19*n+6): seq(A005906(n), n=0..80); # Wesley Ivan Hurt, Nov 04 2017
  • Mathematica
    Table[(1/6) (n + 1) (23 n^2 + 19 n + 6), {n, 0, 35}] (* or *)
    Table[Binomial[3 n, 3] - 4 Binomial[n + 1, 3], {n, 36}] (* Michael De Vlieger, Mar 10 2016 *)
    LinearRecurrence[{4,-6,4,-1},{1,16,68,180},40] (* Harvey P. Dale, Dec 31 2024 *)
  • PARI
    a(n)=(n+1)*(23*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Feb 22 2017
    

Formula

a(n) = binomial(3*n, 3) - 4*binomial(n+1, 3) = n*(23*n^2 -27*n +10)/6.
a(n-1) = Tet(3*n-2) - 4*Tet(n-1) = (1/6)*n*(23*n^2 - 27*n + 10), n >= 1, with Tet(n) = A000292(n). See the Conway-Guy reference, with a corrected misprint. - Wolfdieter Lang, Jan 09 2017
From G. C. Greubel, Nov 04 2017: (Start)
G.f.: x*(1 + 12*x + 10*x^2)/(1 - x)^4.
E.g.f.: (x/6)*(6 + 42*x + 23*x^2)*exp(x). (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 20 1999
Corrected by T. D. Noe, Nov 07 2006