cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005918 Number of points on surface of square pyramid: 3*n^2 + 2 (n>0).

Original entry on oeis.org

1, 5, 14, 29, 50, 77, 110, 149, 194, 245, 302, 365, 434, 509, 590, 677, 770, 869, 974, 1085, 1202, 1325, 1454, 1589, 1730, 1877, 2030, 2189, 2354, 2525, 2702, 2885, 3074, 3269, 3470, 3677, 3890, 4109, 4334, 4565, 4802, 5045, 5294, 5549, 5810, 6077, 6350, 6629
Offset: 0

Views

Author

Keywords

Comments

Also coordination sequence of the 5-connected (or bnn) net = hexagonal net X integers.
Also (except for initial term) numbers of the form 3n^2+2 that are not squares. All numbers 3n^2+2 are == 2 (mod 3), and hence not squares. - Cino Hilliard, Mar 01 2003, modified by Franklin T. Adams-Watters, Jun 27 2014
If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
Sums of three consecutive squares: (n - 2)^2 + (n - 1)^2 + n^2 for n > 1. - Keith Tyler, Aug 10 2010

Examples

			G.f. = 1 + 5*x + 14*x^2 + 29*x^3 + 50*x^4 + 77*x^5 + 110*x^6 + 149*x^7 + ...
		

References

  • H. S. M. Coxeter, Polyhedral numbers, in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. F. Wells, Three-Dimensional Nets and Polyhedra, Fig. 15.1 (e).

Crossrefs

Partial sums give A063488.

Programs

  • Maple
    A005918:=-(z+1)*(z**2+z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Join[{1}, Table[Plus@@(Range[n, n + 2]^2), {n, 0, 49}]] (* Alonso del Arte, Oct 27 2012 *)
    CoefficientList[Series[(1 - x^2) (1 - x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
    LinearRecurrence[{3,-3,1},{1,5,14,29},50] (* Harvey P. Dale, Dec 12 2015 *)
  • PARI
    sq3nsqp2(n) = { for(x=1,n, y = 3*x*x+2; print1(y, ", ") ) }
    
  • PARI
    {a(n) = 3*n^2 + 2 - (n==0)}; /* Michael Somos, Aug 07 2014 */

Formula

G.f.: (1 - x^2)*(1 - x^3)/(1 - x)^5 = (1+x)*(1+x+x^2)/(1-x)^3.
Euler transform of length 3 sequence [ 5, -1, -1]. - Michael Somos, Aug 07 2014
a(-n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3. - Colin Barker, Aug 07 2014
a(0) = 1; for n > 0, a(n) = A120328(n-1). - Doug Bell, Aug 18 2015
E.g.f.: (2+3*x+3*x^2)*exp(x)-1. - Robert Israel, Aug 18 2015
a(n) = A005448(n) + A005448(n+1), sum of 2 consecutive centered triangular numbers. - R. J. Mathar, Apr 28 2020
a(n) = (n - 1)^2 + n^2 + (n + 1)^2. - Charlie Marion, Aug 31 2021
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=0} 1/a(n) = coth(sqrt(2/3)*Pi)*Pi/(2*sqrt(6)) + 3/4.
Sum_{n>=0} (-1)^n/a(n) = cosech(sqrt(2/3)*Pi)*Pi/(2*sqrt(6)) + 3/4. (End)