cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005969 Sum of fourth powers of Fibonacci numbers.

Original entry on oeis.org

1, 2, 18, 99, 724, 4820, 33381, 227862, 1564198, 10714823, 73457064, 503438760, 3450734281, 23651386922, 162109796922, 1111115037483, 7615701104764, 52198777931900, 357775783071021, 2452231602371646, 16807845698458702
Offset: 1

Views

Author

Keywords

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(1/25)*(Fibonacci(4*n+2)-(-1)^n*4*Fibonacci(2*n+1)+6*n+3): n in [1..25]];// Vincenzo Librandi, Jun 02 2017
  • Maple
    with(combinat): l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+fibonacci(i)^4; printf(`%d,`,l[i]) od: # James Sellers, May 29 2000
    A005969:=(z+1)*(z**2-5*z+1)/(z**2-7*z+1)/(z**2+3*z+1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation, offset zero
  • Mathematica
    CoefficientList[Series[(1+x)*(x^2-5*x+1)/((x^2+3*x+1)*(x^2-7*x+1)*(x- 1)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 02 2017 *)
    LinearRecurrence[{6,10,-30,10,6,-1}, {1,2,18,99,724,4820}, 30] (* G. C. Greubel, Jan 17 2018 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,6,10,-30,10,6]^n*[0;1;2;18;99;724])[1,1] \\ Charles R Greathouse IV, Sep 28 2015
    

Formula

a(n) = Sum_{i=0..n} A056571(i).
G.f.: x*(1+x)*(x^2-5*x+1)/ ( (x^2+3*x+1)*(x^2-7*x+1)*(x-1)^2 ). - Ralf Stephan, Apr 23 2004
a(n) = (1/25)*(F(4n+2)-(-1)^n*4*F(2n+1)+6n+3) where F(n)=A000045(n). - Benoit Cloitre, Sep 13 2004. [Corrected by David Lambert (dave.lambert(AT)comcast.net), Mar 28 2008]

Extensions

More terms from James Sellers, May 29 2000