A006024 Number of labeled mating graphs with n nodes. Also called point-determining graphs.
1, 1, 1, 4, 32, 588, 21476, 1551368, 218608712, 60071657408, 32307552561088, 34179798520396032, 71474651351939175424, 296572048493274368856832, 2448649084251501449508762880, 40306353989748719650902623919616
Offset: 0
Keywords
Examples
Consider the square (cycle of length 4) on vertices 1, 2, 3 and 4 in that order. Join a fifth vertex (5) to vertices 1, 3 and 4. The resulting graph is not a mating graph since vertices 1 and 3 both have the set {2, 4, 5} as neighbors. If we delete the edge (1,5) then the resulting graph is a mating graph: the neighborhood sets for vertices 1, 2, 3, 4 and 5 are respectively {2,4}, {1,3}, {2,4,5}, {1,3,5} and {3,4} - all different.
References
- R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- I. M. Gessel and J. Li, Enumeration of Point-Determining Graphs, arXiv:0705.0042 [math.CO], 2007-2009.
- I. M. Gessel and J. Li, Enumeration of point-determining graphs, J. Combinatorial Theory Ser. A 118 (2011), 591-612.
- R. C. Read, The Enumeration of Mating-Type Graphs, Dept. Combinatorics and Optimization, Univ. Waterloo, Oct 1989. (Annotated scanned copy)
- D. Sumner, Point determination in graphs, Discrete Mathematics 5 (1973), 179-187.
Crossrefs
Programs
-
Mathematica
a[n_] := Sum[StirlingS1[n, k] 2^Binomial[k, 2], {k, 0, n}]; Array[a, 15] (* Jean-François Alcover, Jul 25 2018 *)
-
PARI
a(n)=n!*polcoeff(sum(k=0,n,2^(k*(k-1)/2)*log(1+x+x*O(x^n))^k/k!),n) \\ Paul D. Hanna, May 20 2009
Formula
a(n) = Sum_{k=0..n} Stirling1(n, k)*2^binomial(k, 2). - Ronald C. Read and Vladeta Jovovic, Feb 10 2003
E.g.f.: Sum_{n>=0} 2^(n(n-1)/2)*log(1+x)^n/n!. - Paul D. Hanna, May 20 2009
Extensions
More terms from Ronald C. Read and Vladeta Jovovic, Feb 10 2003
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018
Comments