A006051 Square hex numbers.
1, 169, 32761, 6355441, 1232922769, 239180661721, 46399815451081, 9001325016847969, 1746210653453054881, 338755865444875798921, 65716891685652451935769, 12748738231151130799740241, 2473189499951633722697670961, 479786014252385791072548426169
Offset: 1
Examples
G.f. = x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ...
References
- M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..435
- M. Gardner & N. J. A. Sloane, Correspondence, 1973-74
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Sociedad Magic Penny Patagonia, Leonardo en Patagonia
- Eric Weisstein's World of Mathematics, Hex Number.
- Index entries for linear recurrences with constant coefficients, signature (195,-195,1).
Crossrefs
Programs
-
Magma
[(7*Evaluate(ChebyshevSecond(n),97) - 7*Evaluate(ChebyshevU(n-1), 97) + 1)/8: n in [1..30]]; // G. C. Greubel, Nov 04 2017; Oct 07 2022
-
Mathematica
Rest@ CoefficientList[Series[x(1-26x+x^2)/((1-x)(1-194x+x^2)), {x,0,20}], x] (* Michael De Vlieger, Jan 02 2017 *) LinearRecurrence[{195,-195,1},{1,169,32761},20] (* Harvey P. Dale, Nov 03 2017 *)
-
PARI
{a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* Michael Somos, Feb 15 2011 */
-
SageMath
def A006051(n): return (7*chebyshev_U(n-1,97) - 7*chebyshev_U(n-2,97) + 1)/8 [A006051(n) for n in range(1,31)] # G. C. Greubel, Oct 07 2022
Formula
a(n) = A001570(n)^2.
a(1 - n) = a(n).
G.f.: x * (1 - 26*x + x^2) / ((1 - x) * (1 - 194*x + x^2)). - Simon Plouffe in his 1992 dissertation
a(n) = 194*a(n-1) - a(n-2) - 24, a(1)=1, a(2)=169. - James Sellers, Jul 04 2000
a(n) = (1/8)*(1 + 7*(ChebyshevU(n-1, 97) - ChebyshevU(n-2, 97))). - G. C. Greubel, Oct 07 2022
Comments