cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006051 Square hex numbers.

Original entry on oeis.org

1, 169, 32761, 6355441, 1232922769, 239180661721, 46399815451081, 9001325016847969, 1746210653453054881, 338755865444875798921, 65716891685652451935769, 12748738231151130799740241, 2473189499951633722697670961, 479786014252385791072548426169
Offset: 1

Views

Author

Keywords

Comments

Numbers n of the form n = y^2 = 3*x^2 - 3*x + 1.

Examples

			G.f. = x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ...
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003500.
Intersection of A000290 and A003215.
Values of x are given by A001922, values of y by A001570.

Programs

  • Magma
    [(7*Evaluate(ChebyshevSecond(n),97) - 7*Evaluate(ChebyshevU(n-1), 97) + 1)/8: n in [1..30]]; // G. C. Greubel, Nov 04 2017; Oct 07 2022
    
  • Mathematica
    Rest@ CoefficientList[Series[x(1-26x+x^2)/((1-x)(1-194x+x^2)), {x,0,20}], x] (* Michael De Vlieger, Jan 02 2017 *)
    LinearRecurrence[{195,-195,1},{1,169,32761},20] (* Harvey P. Dale, Nov 03 2017 *)
  • PARI
    {a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* Michael Somos, Feb 15 2011 */
    
  • SageMath
    def A006051(n): return (7*chebyshev_U(n-1,97) - 7*chebyshev_U(n-2,97) + 1)/8
    [A006051(n) for n in range(1,31)] # G. C. Greubel, Oct 07 2022

Formula

a(n) = A001570(n)^2.
a(1 - n) = a(n).
G.f.: x * (1 - 26*x + x^2) / ((1 - x) * (1 - 194*x + x^2)). - Simon Plouffe in his 1992 dissertation
a(n) = 194*a(n-1) - a(n-2) - 24, a(1)=1, a(2)=169. - James Sellers, Jul 04 2000
a(n+1) = A003215(A001921(n)). - Joerg Arndt, Jan 02 2017
a(n) = (1/8)*(1 + 7*(ChebyshevU(n-1, 97) - ChebyshevU(n-2, 97))). - G. C. Greubel, Oct 07 2022