cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006077 (n+1)^2*a(n+1) = (9n^2+9n+3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = 3.

Original entry on oeis.org

1, 3, 9, 21, 9, -297, -2421, -12933, -52407, -145293, -35091, 2954097, 25228971, 142080669, 602217261, 1724917221, 283305033, -38852066421, -337425235479, -1938308236731, -8364863310291, -24286959061533, -3011589296289, 574023003011199, 5028616107443691
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Conjecture: Let W(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. If n == 1 (mod 3) then W(n) = 0. When n == 0 or 2 (mod 3), W(n)*(-1)^(floor((n+1)/3))/6^n is always a positive odd integer. - Zhi-Wei Sun, Aug 21 2013
Conjecture: Let p == 1 (mod 3) be a prime, and write 4*p = x^2 + 27*y^2 with x, y integers and x == 1 (mod 3). Then W(p-1) == (-1)^{(p+1)/2}*(x-p/x) (mod p^2), where W(n) is defined as the above. - Zhi-Wei Sun, Aug 23 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - (x^2*y + y^2*z - z^2*x + 3*x*y*z)), 1/(1 - (x^3 + y^3 - z^3 + 3*x*y*z)), 1/(1 + x^3 + y^3 + z^3 - 3*x*y*z). - Gheorghe Coserea, Aug 04 2018

Examples

			G.f. = 1 + 3*x + 9*x^2 + 21*x^3 + 9*x^4 - 297*x^5 - 2421*x^6 - 12933*x^7 - ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

Related to diagonal of rational functions: A268545-A268555.
Cf. A091401.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    a := n -> 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Nov 01 2017
  • Mathematica
    Table[Sum[(-1)^k*3^(n - 3*k)*Binomial[n, 3*k]*Binomial[2*k, k]* Binomial[3*k, k], {k, 0, Floor[n/3]}], {n, 0, 50}] (* G. C. Greubel, Oct 24 2017 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/3, 2/3}, {1}, x^3 / (x - 1/3)^3 ] / (1 - 3 x), {x, 0, n}]; (* Michael Somos, Nov 01 2017 *)
  • PARI
    subst(eta(q)^3/eta(q^3), q, serreverse(eta(q^9)^3/eta(q)^3*q)) \\ (generating function) Helena Verrill (verrill(AT)math.lsu.edu), Apr 20 2009 [for (-1)^n*a(n)]
    
  • PARI
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    diag(1/(1 + x^3 + y^3 + z^3 - 3*x*y*z), 25)
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 3; a[2] = 9;
      for (n = 2, N-1, a[n+1] = ((9*n^2+9*n+3)*a[n] - 27*n^2*a[n-1])/(n+1)^2);
      concat(1,a);
    };
    seq(24)
    \\ test: y=subst(Ser(seq(202)), 'x, -'x/27); 0 == x*(x^2+9*x+27)*y'' + (3*x^2+18*x+27)*y' + (x+3)*y
    \\ Gheorghe Coserea, Nov 09 2017
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); (-1)^n * polcoeff( subst(eta(x + A)^3 / eta(x^3 + A), x, serreverse( x * eta(x^9 + A)^3 / eta(x + A)^3)), n))}; /* Michael Somos, Nov 01 2017 */

Formula

G.f.: hypergeom([1/3, 2/3], [1], x^3/(x-1/3)^3) / (1-3*x). - Mark van Hoeij, Oct 25 2011
a(n) = Sum_{k=0..floor(n/3)}(-1)^k*3^(n-3k)*C(n,3k)*C(2k,k)*C(3k,k). - Zhi-Wei Sun, Aug 21 2013
0 = x*(x^2+9*x+27)*y'' + (3*x^2 + 18*x + 27)*y' + (x + 3)*y, where y(x) = A(x/-27). - Gheorghe Coserea, Aug 26 2016
a(n) = 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1). - Peter Luschny, Nov 01 2017
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 9*x)*T(x) + (-1 + 9*x)^2*T'(x) + x*(1 - 9*x + 27*x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(-8 + 9*(1 - 9*x)^3)*(1 - 9*x);
g3 = 8 - 36*(1 - 9*x)^3 + 27*(1 - 9*x)^6;
which determine an elliptic surface with four singular fibers. (End)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000