cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006083 Continued fraction for e/2.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, 1, 3, 9, 3, 1, 9, 1, 3, 11, 3, 1, 11, 1, 3, 13, 3, 1, 13, 1, 3, 15, 3, 1, 15, 1, 3, 17, 3, 1, 17, 1, 3, 19, 3, 1, 19, 1, 3, 21, 3, 1, 21, 1, 3, 23, 3, 1, 23, 1, 3, 25, 3, 1, 25, 1, 3, 27, 3, 1, 27, 1, 3, 29, 3, 1, 29, 1, 3, 31, 3
Offset: 1

Views

Author

Keywords

Examples

			1.359140914229522617680143735... = 1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, May 10 2009
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 601.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A019739 = Decimal expansion. - Harry J. Smith, May 10 2009

Programs

  • Mathematica
    ContinuedFraction[E/2, 94] (* Jean-François Alcover, Apr 01 2011 *)
    Join[{1, 2},LinearRecurrence[{0, 0, 1, 0, 0, 1, 0, 0, -1},{1, 3, 1, 1, 1, 3, 3, 3, 1},92]] (* Ray Chandler, Sep 03 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 55000); x=contfrac(exp(1)/2); for (n=1, 20000, write("b006083.txt", n, " ", x[n])); } \\ Harry J. Smith, May 10 2009
    
  • PARI
    Vec(x*(1+2*x+x^2+2*x^3-x^4-3*x^6+x^8-x^10) / ((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)^2) + O(x^50)) \\ Colin Barker, May 16 2016

Formula

a(1)=1, a(2)=2, a(3)=1, a(4)=3, a(5)=1, a(6)=1, a(7)=1, a(8)=3, then for k>=1 a(6*k+3)=a(6*k+6)=2*k+1, a(6*k+4)=a(6*k+8)=3, a(6*k+5)=a(6*k+7)=1. - Benoit Cloitre, Apr 08 2003
From Colin Barker, May 16 2016: (Start)
a(n) = a(n-3)+a(n-6)-a(n-9) for n>9.
G.f.: x*(1+2*x+x^2+2*x^3-x^4-3*x^6+x^8-x^10) / ((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)^2).
(End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003