cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003417 Continued fraction for e.

Original entry on oeis.org

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34, 1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42, 1, 1, 44, 1, 1, 46, 1, 1, 48, 1, 1, 50, 1, 1, 52, 1, 1, 54, 1, 1, 56, 1, 1, 58, 1, 1, 60, 1, 1, 62, 1, 1, 64, 1, 1, 66
Offset: 0

Views

Author

Keywords

Comments

This is also the Engel expansion for 3*exp(1/2)/2 - 1/2. - Gerald McGarvey, Aug 07 2004
Sorted with duplicate terms dropped, this is A004277, 1 together with the positive even numbers. - Alonso del Arte, Jan 27 2012
From Peter Bala, Nov 26 2019: (Start)
Related continued fractions expansions:
2*e = [5; 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, ..., 1, 3, 2*n, 3, 1, 2*n, ...].
(1/2)*e = [1; 2, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, ..., 1, 3, 2*n + 1, 3, 1, 2*n + 1, ...].
4*e = [10, 1, 6, 1, 7, 2, 7, 2, 7, 1, 1, 1, 7, 3, 7, 1, 2, 1, 7, 4, 7, 1, 3, 1, 7, 5, 7, 1, 4, ..., 1, 7, n+1, 7, 1, n, ...].
(1/4)*e = [0, 1, 2, 8, 3, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 7, 1, 2, 2, 1, 1, 1, 3, 7, 1, 3, 2, 1, 1, 1, 4, 7, 1, 4, 2, ..., 1, 1, 1, n, 7, 1, n, 2, ...]. (End)

Examples

			2.718281828459... = 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + ...))))
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.2.
  • Jay R. Goldman, The Queen of Mathematics, 1998, p. 70.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    numtheory[cfrac](exp(1),100,'quotients'); # Jani Melik, May 25 2006
    A003417:=(2+z+2*z**2-3*z**3-z**4+z**6)/(z-1)**2/(z**2+z+1)**2; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    ContinuedFraction[E, 100] (* Stefan Steinerberger, Apr 07 2006 *)
    a[n_] := KroneckerDelta[1, n] + 2 n/3 - (2 n - 3)/3 DirichletCharacter[3, 1, n]; Table[a[n], {n, 1, 20}] (* Enrique Pérez Herrero, Feb 23 2013 *)
    Table[Piecewise[{{2, n == 0}, {2 (n + 1)/3, Mod[n, 3] == 2}}, 1], {n, 0, 120}] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 2, 1, 1, 4, 1}, 120]] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, Table[(2 (n + 4) + (1 - 2 n) Cos[2 n Pi/3] + Sqrt[3] (1 - 2 n) Sin[2 n Pi/3])/9, {n, 120}]] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, Flatten[Table[{1, 2n, 1}, {n, 40}]]] (* Harvey P. Dale, Jan 21 2020 *)
  • PARI
    contfrac(exp(1)) \\ Alexander R. Povolotsky, Feb 23 2008
    
  • PARI
    { allocatemem(932245000); default(realprecision, 25000); x=contfrac(exp(1)); for (n=1, 10000, write("b003417.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 14 2009
    
  • PARI
    A003417(n)=if(n%3<>2,1+(n==0),(n+1)/3*2) \\ M. F. Hasler, May 01 2013
    
  • Python
    def A003417(n): return 2 if n == 0 else 1 if n % 3 != 2 else (n+1)//3<<1 # Chai Wah Wu, Jul 27 2022
  • Scala
    def eContFracTrio(n: Int): List[Int] = List(1, 2 * n, 1)
    2 +: ((1 to 40).map(eContFracTrio).flatten) // Alonso del Arte, Nov 22 2020, with thanks to Harvey P. Dale
    

Formula

From Paul Barry, Jun 27 2006: (Start)
G.f.: (2 + x + 2*x^2 - 3*x^3 - x^4 + x^6)/(1 - 2*x^3 + x^6).
a(n) = 0^n + Sum{k = 0..n} 2*sin(2*Pi*(k - 1)/3)*floor((2*k - 1)/3)/sqrt(3). [Corrected and simplified by Jianing Song, Jan 05 2019] (End)
a(n) = 2*a(n-3) - a(n-6), n >= 7. - Philippe Deléham, Feb 10 2009
G.f.: 1 + U(0) where U(k)= 1 + x/(1 - x*(2*k + 1)/(1 + x*(2*k + 1) - 1/((2*k + 1) + 1 - (2*k + 1)*x/(x + 1/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Oct 07 2012
a(3*n-1) = 2*n, a(0) = 2, a(n) = 1 otherwise (i.e., for n+1 > 1, not a multiple of 3). - M. F. Hasler, May 01 2013
E.g.f.: First derivative of (2/9)*exp(x)*(x + 3) + (2/9)*exp(-x/2)*(2*x*cos((sqrt(3)/2)*x+2*Pi/3) - 3*cos((sqrt(3)/2)*x)) + x. - Jianing Song, Jan 05 2019
a(n) = floor(1/(n+1))-(floor(n/3)-floor((n+1)/3))*(2*n-1)/3+1. - Aaron J Grech, Sep 06 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - log(2)/2. - Amiram Eldar, May 03 2025

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A019739 Decimal expansion of e/2.

Original entry on oeis.org

1, 3, 5, 9, 1, 4, 0, 9, 1, 4, 2, 2, 9, 5, 2, 2, 6, 1, 7, 6, 8, 0, 1, 4, 3, 7, 3, 5, 6, 7, 6, 3, 3, 1, 2, 4, 8, 8, 7, 8, 6, 2, 3, 5, 4, 6, 8, 4, 9, 9, 7, 9, 7, 8, 7, 4, 8, 3, 4, 8, 3, 8, 1, 3, 8, 6, 2, 0, 3, 8, 3, 1, 5, 1, 7, 6, 7, 7, 3, 7, 9, 7, 2, 8, 5, 6, 9, 1, 0, 8, 9, 2, 6, 2, 5, 8, 3, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			1.359140914229522617680143735676331248878623546849979787483483813862038... = A001113/2.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.3, p. 14.
  • Jolley, Summation of Series, Dover (1961) eq. (161) on page 30.

Crossrefs

Cf. A001113, A006083 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(1)/2; // Vincenzo Librandi, Apr 05 2020
  • Mathematica
    N[Product[((1/n)!)^MoebiusMu[n], {n, 1, 200000}]] (* John M. Campbell, Jun 14 2011 *)
    RealDigits[E/2,10,120][[1]] (* Harvey P. Dale, Sep 18 2018 *)
  • PARI
    default(realprecision, 20080); x=exp(1)/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019739.txt", n, " ", d)); \\ Harry J. Smith, May 10 2009
    
  • PARI
    digits(10^default(realprecision)*exp(1)\20) \\ M. F. Hasler, Apr 01 2020
    

Formula

e/2 = lim_{n->oo} n*(e - (1+1/n)^n). - Benoit Cloitre, Sep 17 2002
e/2 = Product_{n>=1} ((1/n)!)^mu(n), where mu is the Mobius function is an unusual infinite product for this number: (see Millane ref.). - John M. Campbell, Jun 14 2011
10*(this constant) = 5*exp(1) = Sum_{j>=0} j^3/j! [Jolley]. - R. J. Mathar, Oct 03 2011
Equals Sum_{j>=0} (1+j)/(1+2*j)!. - Bruno Berselli, May 25 2015
Equals the coefficient of x in Sum_{m>1} log((1 - x/m!)(1 - 2x/m!)...(1 - (m-1)x/m!)). - M. F. Hasler, Apr 01 2020
Equals A001113/2 = Sum_{k>=1} k*(k-1)/(2 * k!). - Amiram Eldar, Aug 10 2020

A081750 Simple continued fraction of 2*e.

Original entry on oeis.org

5, 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, 1, 3, 8, 3, 1, 8, 1, 3, 10, 3, 1, 10, 1, 3, 12, 3, 1, 12, 1, 3, 14, 3, 1, 14, 1, 3, 16, 3, 1, 16, 1, 3, 18, 3, 1, 18, 1, 3, 20, 3, 1, 20, 1, 3, 22, 3, 1, 22, 1, 3, 24, 3, 1, 24, 1, 3, 26, 3, 1, 26, 1, 3, 28, 3, 1, 28, 1, 3, 30, 3, 1, 30, 1, 3, 32
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2003

Keywords

Comments

Decimal expansion is A019762. - Michael Somos, May 07 2012

Examples

			2*e = 5 + 1 / (2 + 1 / (3 + 1 / (2 + 1 / (3 + 1 / (1 + ...))))). - _Michael Somos_, May 07 2012
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ 2E, 94] (* Robert G. Wilson v, May 07 2012 *)
  • PARI
    A081750(n) = if(1==n,5,if(n<6,2+(n%2), my(k=n\6, r=n%6); if(0==r || 2==r, 1, if(1==r, 2*k, if(n%2, 3, 2*(k+1)))))); \\ Antti Karttunen, Feb 20 2023

Formula

First 5 terms are 5, 2, 3, 2, 3.
For k >= 1, a(6k)=1; a(6k+1)=2k; a(6k+2)=1; a(6k+3)=3; a(6k+4)=2k+2; a(6k+5)=3.

A081749 Continued fraction for e/5.

Original entry on oeis.org

0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 9, 1, 3, 3, 3, 4, 3, 3, 4, 1, 2, 2, 1, 4, 1, 2, 2, 1, 5, 9, 1, 5, 3, 3, 6, 3, 3, 6, 1, 2, 2, 1, 6, 1, 2, 2, 1, 7, 9, 1, 7, 3, 3, 8, 3, 3, 8, 1, 2, 2, 1, 8, 1, 2, 2, 1, 9, 9, 1, 9, 3, 3, 10, 3, 3, 10, 1, 2, 2, 1, 10, 1, 2
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2003

Keywords

Crossrefs

Cf. A019762 (decimal expansion).
Cf. A003417 (e), A006083 (e/2), A006084 (e/3), A006085 (e/4).

Programs

  • Mathematica
    ContinuedFraction[E/5, 100] (* Paolo Xausa, Sep 21 2024 *)
  • PARI
    contfrac(exp(1)/5) \\ Michel Marcus, Dec 03 2013

Formula

First 18 terms: 0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2.
For k >= 1, a(19k)=a(19k+1)=a(19k+16)=a(19k+17)=3; a(19k+2)=a(19k+7)=2k; a(19k+3)=a(19k+6)=a(19k+8)=a(19k+11)=a(19k+14)=1; a(19k+4)=a(19k+5)=a(19k+9)= a(19k+10)=2; a(19k+12)=a(19k+15)=2k+1; a(19k+18)=2k+2.
Showing 1-4 of 4 results.