cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A244009 Decimal expansion of 1 - log(2).

Original entry on oeis.org

3, 0, 6, 8, 5, 2, 8, 1, 9, 4, 4, 0, 0, 5, 4, 6, 9, 0, 5, 8, 2, 7, 6, 7, 8, 7, 8, 5, 4, 1, 8, 2, 3, 4, 3, 1, 9, 2, 4, 4, 9, 9, 8, 6, 5, 6, 3, 9, 7, 4, 4, 7, 4, 5, 8, 7, 9, 3, 1, 9, 9, 9, 0, 5, 0, 6, 6, 0, 6, 3, 7, 8, 0, 3, 0, 3, 0, 5, 2, 8, 4, 3, 9, 4, 1, 3, 6, 6, 7, 3, 0, 0, 3, 5, 8, 1, 3, 1, 2, 4, 5, 7, 9, 9, 8, 5
Offset: 0

Views

Author

Keywords

Comments

Fraction of numbers which are sqrt-smooth, see A048098 and A063539. - Charles R Greathouse IV, Jul 14 2014
Asymptotic survival probability in the 100 prisoners problem. - Alois P. Heinz, Jul 08 2022

Examples

			0.30685281944005469058276787854...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Essentially the same digits as A239354.

Programs

  • Maple
    f:= sum(1/(2*k*(2*k+1)), k=1..infinity):
    s:= convert(evalf(f, 140), string):
    seq(parse(s[i+1]), i=1..106);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RealDigits[1-Log[2],10,120][[1]] (* Harvey P. Dale, Sep 23 2016 *)
  • PARI
    1-log(2) \\ Charles R Greathouse IV, Jul 14 2014

Formula

Equals Sum_{k>=0} 1/(2*k*(2*k+1)) = A239354 + 1/4 = A188859/2.
From Amiram Eldar, Aug 07 2020: (Start)
Equals Sum_{k>=1} 1/(k*(k+1)*2^k) = Sum_{k>=2} 1/A100381(k).
Equals Sum_{k>=2} (-1)^k * zeta(k)/2^k.
Equals Integral_{x=1..oo} 1/(x^2 + x^3) dx. (End)
Equals log(e/2) = log(A019739) = -log(2/e) = -log(A135002). - Wolfdieter Lang, Mar 04 2022
Equals lim_{n->oo} A024168(n)/n!. - Alois P. Heinz, Jul 08 2022
Equals 1/(4 - 4/(7 - 12/(10 - ... - 2*n*(n-1)/((3*n+1) - ...)))) (an equivalent continued fraction for 1 - log(2) was conjectured by the Ramanujan machine). - Peter Bala, Mar 04 2024
Equals Sum_{k>=1} zeta(2*k)/((2*k + 1)*2^(2*k-1)) (see Finch). - Stefano Spezia, Nov 02 2024

A279607 Beatty sequence for e/2; i.e., a(n) = floor(n*e/2).

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89
Offset: 1

Views

Author

Clark Kimberling, Dec 16 2016

Keywords

Comments

The complement is A279608, the Beatty sequence for e/(e - 2).

Crossrefs

Cf. A019739 (e/2), A279608.

Programs

  • Mathematica
    r = E/2; s = r/(r - 1); z = 10000;
    Table[Floor[n*r], {n, 1, z}] ;(* A279607 *)
    Table[Floor[n*s], {n, 1, z}] ;(* A279608 *)
  • PARI
    e = exp(1);
    for(n=1, 100, print1(floor(n*e/2),", ")) \\ Indranil Ghosh, Mar 30 2017
    
  • Python
    import math
    from mpmath import mp
    mp.dps=100
    print([int(math.floor(n*e/2)) for n in range(1, 101)]) # Indranil Ghosh, Mar 30 2017

A006083 Continued fraction for e/2.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, 1, 3, 9, 3, 1, 9, 1, 3, 11, 3, 1, 11, 1, 3, 13, 3, 1, 13, 1, 3, 15, 3, 1, 15, 1, 3, 17, 3, 1, 17, 1, 3, 19, 3, 1, 19, 1, 3, 21, 3, 1, 21, 1, 3, 23, 3, 1, 23, 1, 3, 25, 3, 1, 25, 1, 3, 27, 3, 1, 27, 1, 3, 29, 3, 1, 29, 1, 3, 31, 3
Offset: 1

Views

Author

Keywords

Examples

			1.359140914229522617680143735... = 1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, May 10 2009
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 601.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A019739 = Decimal expansion. - Harry J. Smith, May 10 2009

Programs

  • Mathematica
    ContinuedFraction[E/2, 94] (* Jean-François Alcover, Apr 01 2011 *)
    Join[{1, 2},LinearRecurrence[{0, 0, 1, 0, 0, 1, 0, 0, -1},{1, 3, 1, 1, 1, 3, 3, 3, 1},92]] (* Ray Chandler, Sep 03 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 55000); x=contfrac(exp(1)/2); for (n=1, 20000, write("b006083.txt", n, " ", x[n])); } \\ Harry J. Smith, May 10 2009
    
  • PARI
    Vec(x*(1+2*x+x^2+2*x^3-x^4-3*x^6+x^8-x^10) / ((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)^2) + O(x^50)) \\ Colin Barker, May 16 2016

Formula

a(1)=1, a(2)=2, a(3)=1, a(4)=3, a(5)=1, a(6)=1, a(7)=1, a(8)=3, then for k>=1 a(6*k+3)=a(6*k+6)=2*k+1, a(6*k+4)=a(6*k+8)=3, a(6*k+5)=a(6*k+7)=1. - Benoit Cloitre, Apr 08 2003
From Colin Barker, May 16 2016: (Start)
a(n) = a(n-3)+a(n-6)-a(n-9) for n>9.
G.f.: x*(1+2*x+x^2+2*x^3-x^4-3*x^6+x^8-x^10) / ((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)^2).
(End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

A257775 Decimal expansion of (e/2)^2.

Original entry on oeis.org

1, 8, 4, 7, 2, 6, 4, 0, 2, 4, 7, 3, 2, 6, 6, 2, 5, 5, 6, 8, 0, 7, 6, 0, 6, 8, 6, 5, 1, 4, 3, 7, 5, 1, 9, 5, 3, 2, 9, 5, 0, 7, 8, 8, 9, 2, 6, 3, 7, 9, 6, 1, 8, 3, 1, 0, 2, 1, 7, 8, 1, 9, 5, 5, 6, 3, 0, 6, 4, 3, 4, 4, 9, 0, 1, 9, 7, 6, 4, 4, 4, 0, 8, 4, 6, 0, 7, 8, 1, 2, 1, 2, 6, 9, 7, 8, 0, 4, 4, 8, 6, 9, 3, 4, 3
Offset: 1

Views

Author

Stanislav Sykora, May 12 2015

Keywords

Comments

The coefficient a of the unique parabola y = a*x^2 which, at some x > 0, kisses the exponential function y = exp(x). The kissing point coordinates are (2,e^2).

Examples

			1.847264024732662556807606865143751953295078892637961831021781955630...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[2]/4, 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    exp(2)/4

A058298 Triangle n!/(n-k), 1 <= k < n, read by rows.

Original entry on oeis.org

2, 3, 6, 8, 12, 24, 30, 40, 60, 120, 144, 180, 240, 360, 720, 840, 1008, 1260, 1680, 2520, 5040, 5760, 6720, 8064, 10080, 13440, 20160, 40320, 45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880, 403200, 453600, 518400, 604800, 725760, 907200, 1209600, 1814400, 3628800
Offset: 2

Views

Author

Leroy Quet, Dec 07 2000

Keywords

Comments

Together with 1, numbers n such that n divides k! if and only if k! >= n. - Charles R Greathouse IV, Aug 16 2016

Examples

			Triangle begins:
      2;
      3,     6;
      8,    12,    24;
     30,    40,    60,   120;
    144,   180,   240,   360,   720;
    840,  1008,  1260,  1680,  2520,   5040;
   5760,  6720,  8064, 10080, 13440,  20160,  40320;
  45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880;
  ...
		

Crossrefs

Columns k=1..5 are A001048(n-1), A052747, A052759, A052778, A052794.
Row sums are A052881.

Programs

  • Mathematica
    Flatten[Table[n!/(n-k),{n,2,10},{k,n-1}]] (* Harvey P. Dale, Jul 23 2014 *)
  • PARI
    T(n,k)={if(kAndrew Howroyd, Aug 08 2020

Formula

Sum_{n>=2} Sum_{k=1..n-1} 1/T(n, k) = e/2 (A019739). - Amiram Eldar, Jun 29 2025

A334397 Decimal expansion of (e - 2)/e.

Original entry on oeis.org

2, 6, 4, 2, 4, 1, 1, 1, 7, 6, 5, 7, 1, 1, 5, 3, 5, 6, 8, 0, 8, 9, 5, 2, 4, 5, 9, 6, 7, 7, 0, 7, 8, 2, 6, 5, 1, 0, 8, 3, 7, 7, 7, 3, 7, 9, 3, 6, 4, 6, 4, 3, 3, 0, 9, 8, 4, 3, 2, 6, 3, 9, 6, 6, 0, 5, 0, 7, 7, 0, 0, 8, 5, 1, 0, 2, 0, 0, 3, 9, 3, 2, 8, 5, 7, 0, 5, 4, 5
Offset: 0

Views

Author

Daniel Hoyt, Apr 26 2020

Keywords

Examples

			0.2642411176571153568089524596770782651...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..1} x/e^x dx.
Equals 1 - A135002.
Equals 1/A309419.
Equals -Integral_{x=0..1, y=0..1} x*y/(exp(x*y)*log(x*y)) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the above integral.) - Petros Hadjicostas, Jun 30 2020
From Amiram Eldar, Aug 05 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(k! * (k+2)).
Equals Sum_{k>=1} 1/((2*k)! * (k+1)).
Equals Sum_{k>=1} (-1)^k * k^2 * H(k)/k!, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. (End)

A084148 Numerators of terms in the Pippenger product.

Original entry on oeis.org

2, 8, 1152, 1605632, 43913893117952, 98583626709555431615548620800, 197241992148713072661201501950348880945923403897735704916000768
Offset: 1

Views

Author

Eric W. Weisstein, May 15 2003

Keywords

Crossrefs

Cf. A019739, A084149 (denominators).

Programs

  • Magma
    F:=Factorial;
    A084148:= func< n | n eq 1 select 2 else Round(Numerator( 2^(2^n -1)*(F(2^(n-1)))^6 / ((F(2^n))^2 * (F(2^(n-2)))^4) )) >;
    [A084148(n): n in [1..10]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    a[n_] := Numerator[((2^(n - 1) - 1)!!*(2^n)!!/((2^(n - 1))!!*(2^n - 1)!!))^2/2]; Array[a, 7] (* Amiram Eldar, Apr 10 2022 *)
  • SageMath
    f=factorial
    def A084148(n): return 2 if (n==1) else numerator( 2^(2^n -1)*(f(2^(n-1)))^6 / ((f(2^n))^2 * (f(2^(n-2)))^4) )
    [A084148(n) for n in range(1,10)] # G. C. Greubel, Oct 13 2022

Formula

From Amiram Eldar, Apr 10 2022: (Start)
a(n) = numerator(((2^(n-1)-1)!!*(2^n)!!/((2^(n-1))!!*(2^n-1)!!))^2/2).
Product_{n>=1} (a(n)/A084149(n))^(1/2^n) = e/2 (A019739). (End)
a(n) = numerator( 2^(2^n -1)*((2^(n-1))!)^6 / (((2^n)!)^2 * ((2^(n-2))!)^4) ), with a(1) = 2. - G. C. Greubel, Oct 13 2022

A196533 Decimal expansion of 15*e.

Original entry on oeis.org

4, 0, 7, 7, 4, 2, 2, 7, 4, 2, 6, 8, 8, 5, 6, 7, 8, 5, 3, 0, 4, 0, 4, 3, 1, 2, 0, 7, 0, 2, 8, 9, 9, 3, 7, 4, 6, 6, 3, 5, 8, 7, 0, 6, 4, 0, 5, 4, 9, 9, 3, 9, 3, 6, 2, 4, 5, 0, 4, 5, 1, 4, 4, 1, 5, 8, 6, 1, 1, 4, 9, 4, 5, 5, 3, 0, 3, 2, 1, 3, 9, 1, 8, 5, 7, 0, 7, 3, 2, 6, 7, 7, 8, 7, 7, 4, 9, 6, 4
Offset: 2

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			40.7742274268856785304043120702... = 15*A001113 = 30*A019739.
		

Programs

Formula

Equals sum(j>=1, j^3/(j-1)! ).
Equals 10 * sum(n>=1, A000217(n)/n! ). - Richard R. Forberg, Jul 14 2013

A022766 Ordered sequence of distinct terms of the form floor(x^i * floor(x^j)), i,j >= 0, where x = e/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 25, 27, 28, 29, 31, 34, 37, 38, 39, 43, 46, 47, 50, 51, 52, 53, 54, 58, 63, 64, 68, 69, 71, 72, 73, 79, 86, 87, 93, 94, 97, 98, 99, 108, 116, 119, 126, 128, 129, 132, 133, 134, 135, 146, 158
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A019739 (e/2).

Extensions

Offset corrected by Sean A. Irvine, May 20 2019

A378942 Decimal expansion of (1/sqrt(Pi) + e*erfc(-1))/2.

Original entry on oeis.org

2, 7, 8, 6, 5, 8, 4, 8, 3, 2, 1, 5, 5, 0, 1, 9, 8, 7, 6, 6, 2, 8, 9, 5, 2, 0, 2, 4, 8, 8, 7, 7, 9, 1, 2, 0, 0, 2, 6, 9, 1, 9, 2, 6, 5, 6, 7, 8, 2, 3, 3, 2, 6, 7, 1, 5, 1, 6, 2, 4, 0, 6, 0, 3, 2, 0, 9, 1, 4, 5, 1, 5, 3, 6, 6, 4, 1, 7, 2, 6, 7, 9, 2, 1, 1, 2, 2, 9, 9, 6, 2, 2, 6, 6, 5, 2, 6, 8, 4, 2
Offset: 1

Views

Author

Stefano Spezia, Dec 11 2024

Keywords

Examples

			2.7865848321550198766289520248877912002691926567823...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 4.6, p. 262.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/Sqrt[Pi]+E Erfc[-1])/2,10,100][[1]]

Formula

Equals (1 + e*sqrt(Pi)*(1 + erf(1)))/(2*sqrt(Pi)).
Equals A222392 / 2. - Amiram Eldar, Feb 15 2025
Showing 1-10 of 10 results.