cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006085 Continued fraction for e/4.

Original entry on oeis.org

0, 1, 2, 8, 3, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 7, 1, 2, 2, 1, 1, 1, 3, 7, 1, 3, 2, 1, 1, 1, 4, 7, 1, 4, 2, 1, 1, 1, 5, 7, 1, 5, 2, 1, 1, 1, 6, 7, 1, 6, 2, 1, 1, 1, 7, 7, 1, 7, 2, 1, 1, 1, 8, 7, 1, 8, 2, 1, 1, 1, 9, 7, 1, 9, 2, 1, 1, 1, 10, 7, 1, 10, 2, 1, 1, 1, 11, 7, 1, 11, 2, 1, 1, 1, 12, 7, 1, 12, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			0.679570457114761308840071867... = 0 + 1/(1 + 1/(2 + 1/(8 + 1/(3 + ...)))). - _Harry J. Smith_, May 10 2009
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 601.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A019741 = Decimal expansion. - Harry J. Smith, May 10 2009

Programs

  • Mathematica
    ContinuedFraction[E/4,120]  (* Harvey P. Dale, Apr 01 2011 *)
    Join[{0, 1, 2, 8, 3},LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1},{1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 7, 1, 2},97]] (* Ray Chandler, Sep 03 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 40000); x=contfrac(exp(1)/4); for (n=1, 20000, write("b006085.txt", n, " ", x[n])); } \\ Harry J. Smith, May 10 2009
    
  • PARI
    concat(0, Vec(x*(1+x+7*x^2-4*x^3+5*x^4-4*x^5+5*x^6-4*x^7+9*x^8-12*x^9-3*x^10-x^11-x^13-6*x^16+7*x^17+x^18)/((1-x)^2*(1+x)*(1+x^2)^2*(1+x^4)^2) + O(x^50))) \\ Colin Barker, May 16 2016

Formula

First seven terms are 0, 1, 2, 8, 3, 1, 1; then a(8k)=1, a(8k+1)=k, a(8k+2)=7, a(8k+3)=1, a(8k+4)=k, a(8k+5)=2, a(8k+6)=1, a(8k+7)=1. - Benoit Cloitre, Apr 08 2003
G.f.: x*(1+x+7*x^2-4*x^3+5*x^4-4*x^5+5*x^6-4*x^7+9*x^8-12*x^9-3*x^10-x^11-x^13-6*x^16+7*x^17+x^18) / ((1-x)^2*(1+x)*(1+x^2)^2*(1+x^4)^2). - Colin Barker, May 16 2016

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003