cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006171 Number of factorization patterns of polynomials of degree n over integers.

Original entry on oeis.org

1, 1, 3, 5, 11, 17, 34, 52, 94, 145, 244, 370, 603, 899, 1410, 2087, 3186, 4650, 6959, 10040, 14750, 21077, 30479, 43120, 61574, 86308, 121785, 169336, 236475, 326201, 451402, 618135, 848209, 1153733, 1571063, 2123325, 2871419, 3857569, 5182999, 6924303
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are unlimited distinguishable but unlabeled objects of each size. E.g., in splitting 2 into two parts of size 1, we distinguish whether the same object is used for each part. Also number of factorization patterns over rationals, or many other UFDs (but not over real or complex numbers). - Franklin T. Adams-Watters, Jun 19 2006
Equals the "aerate and convolve" convergent of A000041: (1, 1, 2, 3, 5, 7, 11, ...) * (1, 0, 1, 0, 2, 0, 3, 0, 5, ...) * (1, 0, 0, 1, 0, 0, 2, 0, 0, 3, ...). - Gary W. Adamson, Jun 16 2009
Also equals the number of distinct (up to unitary similarity) unital *-subalgebras of the n X n complex matrices. A unital *-subalgebra is a subspace that is closed under multiplication and the conjugate transpose, and which contains the identity matrix (see A215905 and A215925). - Nathaniel Johnston, Aug 27 2012
Also equals the number of partitions having parts consisting of runs of equal parts. - Gregory L. Simay, May 25 2017
Also equals the number of generalized partitions of n when there are d(a) different types of a, (a = 1,2,3,...), where d(n) is the number of divisors of n. a(3)=5 because there are 5 partitions of 3 with "d(a) copies of a", namely (3_1), (3_2), (2_1, 1_1), (2_2, 1_1), (1_1, 1_1, 1_1). - Augustine O. Munagi, Jun 13 2022

Examples

			For n=3 we have 3 = (3*1) = (1*3) = (2*1) + (1*1) = (1*2) + (1*1) = (1*1) + (1*1) + (1*1) so a(3)=5.
For n=4 we have the following 11 partitions, with the additive runs indicated by "[]": [4], [3]+[1], [2+2], [2]+[2], [2]+[1+1], [2]+[1]+[1], [1+1+1+1], [1+1+1]+[1], [1+1]+[1+1], [1+1]+[1]+[1], [1]+[1]+[1]+[1]. - _Gregory L. Simay_, May 25 2017
		

References

  • R. A. Hultquist, G. L. Mullen and H. Niederreiter, Association schemes and derived PBIB designs of prime power order, Ars. Combin., 25 (1988), 65-82.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(tau): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    max = 50; gf[x_] := Product[(1 - x^k)^-DivisorSigma[0, k], {k, 1, max}]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011 *)
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2018, the fastest *)
    nmax = 50; CoefficientList[Series[Product[Sum[PartitionsP[k]*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 26 2020 *)
  • PARI
    {a(n) = if(n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x * O(x^n))^numdiv(k)), n))}; /* Michael Somos, Apr 01 2003 */
    
  • PARI
    N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^j)); Vec(gf) \\ Joerg Arndt, May 03 2008
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^m+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */
    
  • PARI
    {A060640(n)=sumdiv(n, d, d*sigma(n/d))}
    {a(n)=polcoeff(exp(sum(m=1,n+1,A060640(m)*x^m/m)+x*O(x^n)),n)} /* Paul D. Hanna, Oct 19 2011 */

Formula

From Vladeta Jovovic, Apr 21 2001: (Start)
Euler transform of tau(n), tau(n) = the number of divisors of n, cf. A000005.
G.f.: Product_{k>=1} (1 - x^k)^(-tau(k)).
a(n) = 1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k) = Sum_{d|k} d*tau(d), cf. A060640. (End)
a(n) = Sum_{ partition of n} product p(k(i)), where p(n) is the partition function A000041. E.g., for the partition [4,2^3,1^4], the product is p(1)*p(3)*p(4) = 1*3*5 = 15. - Franklin T. Adams-Watters, Jun 19 2006
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1-x^n)/n ). - Paul D. Hanna, Mar 28 2009
From Paul D. Hanna, Oct 19 2011: (Start)
Logarithmic derivative yields A060640.
G.f.: A(x) = exp( Sum_{n>=1} A060640(n)*x^n/n ), where A060640(n) = Sum_{d|n} d*sigma(n/d). (End)
G.f.: 1/Product_{n>=1} E(q^n) where E(q) = Product_{n>=1} (1-q^n). - Joerg Arndt, Feb 27 2014
log(a(n)) ~ Pi * sqrt(n*log(n)/3) [Brigham, 1950]. - Vaclav Kotesovec, Jan 04 2017
a(n) ~ exp(Pi*sqrt(n/(3*log(n))) * (log(n) - log(log(n))/2 + gamma + 6*Zeta'(2)/Pi^2 + log(2/Pi) + log(3)/2)) * Pi^(1/4) * (log(n))^(1/8) / (2^(3/4) * 3^(1/8) * n^(5/8)), where gamma is the Euler-Mascheroni constant (A001620) and Zeta'(2) = -0.9375482543158437537... (see A073002) [user Lucia, MathOverflow, 2014]. - Vaclav Kotesovec, Jan 05 2017

A006167 Number of factorization patterns of polynomials of degree n over F_2.

Original entry on oeis.org

1, 3, 4, 8, 11, 20, 27, 45, 61, 95, 128, 193, 257, 374, 497, 703, 927, 1287, 1683, 2297, 2987, 4013, 5186, 6887, 8843, 11614, 14836, 19294, 24514, 31622, 39968, 51167, 64377, 81839, 102509, 129528, 161539, 202959, 252124, 315110, 389949, 485062
Offset: 1

Views

Author

Keywords

Comments

Let F_q(n) represent the number of factorization patterns of n with the property that there exists a monic polynomial V of degree n over the finite field F_q such that V factors over F_q into one of the F_q(n) factorization patterns. Sequence is for the q=2 case,

Examples

			For n=3 there are 5 factorization patterns of cubic polynomials: 3, 2 + 1, 1^3, 1^2 + 1, 1 + 1 + 1. For example 1^2 + 1 corresponds to a cubic polynomial which factors as a linear of multiplicity 2 and a second distinct linear factor. For q=2 the pattern 1 + 1 + 1 is not allowed since over F_2 there are only two distinct monic irreducibles of degree 1. Thus a(3) = 4.
		

References

  • R. A. Hultquist, G. L. Mullen and H. Niederreiter, Association schemes and derived PBIB designs of prime power order, Ars. Combin., 25 (1988), 65-82.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A001037[n_] := Sum[ MoebiusMu[n/d]*2^d, {d, Divisors[n]}]/n; b[n_] := Sum[ nd = A001037[d]; If[nd >= n/d, 1, 0], {d, Divisors[n]}]; EulerTransform[ seq_List ] := With[{m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]]; A006167 = Rest[ EulerTransform[ Table[ b[n], {n, 1, 42}]]] (* Jean-François Alcover, Mar 15 2012, after Franklin T. Adams-Watters *)

Formula

Euler transform of sequence b(n) = sum_{d|n, A001037(d)>=n/d} 1. - Franklin T. Adams-Watters, Jun 19 2006

Extensions

Additional comments from Gary Mullen, Jun 03 2003
More terms from Franklin T. Adams-Watters, Jun 19 2006

A327044 Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))).

Original entry on oeis.org

1, 1, 3, 5, 11, 17, 33, 50, 89, 135, 223, 332, 530, 775, 1190, 1724, 2576, 3677, 5380, 7586, 10895, 15203, 21480, 29666, 41373, 56593, 77965, 105755, 144155, 193947, 261894, 349719, 468193, 620910, 824743, 1086661, 1433205, 1876865, 2459100, 3202155, 4170043
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Comments

Differs from A006170.
In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} 1/(1 - x^(j*k))), then a(n,m) ~ sqrt(Gamma(m+1)) * HarmonicNumber(m)^((m+1)/4) * exp(Pi*sqrt(2*HarmonicNumber(m)*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 137^(3/2) * exp(sqrt(137*n/10)*Pi/3) / (2880*sqrt(6)*n^2).
Showing 1-3 of 3 results.