A006203 Discriminants of imaginary quadratic fields with class number 3 (negated).
23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907
Offset: 1
References
- H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
- J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of Number Theory Carbondale 1979, Lect. Notes Math. 751 (1982).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998), pp. 295-330.
- Kurt Heegner, Diophantische Analysis und Modulfunktionen, Matematische Zaitschrift, 1952, Vol. 56. p. 253.
- S. Lubelski, Zur Reduzibilität von Polynomen in Kongruenzentheorie, Acta Arithmetica 1 (1935) pp. 169-183.
- Keith Matthews, Tables of imaginary quadratic fields with small class numbers
- Pieter Moree and Armand Noubissie, Higher Reciprocity Laws and Ternary Linear Recurrence Sequences, arXiv:2205.06685 [math.NT], 2022. See p. 4.
- Eric Weisstein's World of Mathematics, Class Number.
- Index entries for sequences related to quadratic fields
Crossrefs
Programs
-
Mathematica
Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] & ) /@ Select[ Range[1000], NumberFieldClassNumber[ Sqrt[-#]] == 3 & ]] (* Jean-François Alcover, Jan 04 2012 *)
-
PARI
ok(n)={isfundamental(-n) && quadclassunit(-n).no == 3} \\ Andrew Howroyd, Jul 20 2018
-
Sage
[n for n in (1..1000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==3] # G. C. Greubel, Mar 01 2019
Comments