cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006206 Number of aperiodic binary necklaces of length n with no subsequence 00, excluding the necklace "0".

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078
Offset: 1

Views

Author

Keywords

Comments

Bau-Sen Du (1985/1989)'s Table 1 has this sequence, denoted A_{n,1}, as the second column. - Jonathan Vos Post, Jun 18 2007

Examples

			Necklaces are: 1, 10, 110, 1110; 11110, 11010, 111110, 111010, ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.
Cf. A001461 (partial sums), A000045, A008683, A027750.
Cf. A125951 and A113788 for similar sequences.

Programs

  • Haskell
    a006206 n = sum (map f $ a027750_row n) `div` n where
       f d = a008683 (n `div` d) * (a000045 (d - 1) + a000045 (d + 1))
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Maple
    with(numtheory): with(combinat):
    A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) end do; sum/n; end proc:
  • Mathematica
    a[n_] := Total[(MoebiusMu[n/#]*(Fibonacci[#+1] + Fibonacci[#-1]) & ) /@ Divisors[n]]/n;
    (* or *) a[n_] := Sum[LucasL[k]*MoebiusMu[n/k], {k, Divisors[n]}]/n; Table[a[n], {n,100}] (* Jean-François Alcover, Jul 19 2011, after given formulas *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)
    
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z + z**2))
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020

Formula

Euler transform is Fibonacci(n+1): 1/((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)^2 * (1 - x^6)^2 * ...) = 1/(Product_{n >= 1} (1 - x^n)^a(n)) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + ...
Coefficients of power series of natural logarithm of the infinite product Product_{n>=1} (1 - x^n - x^(2*n))^(-mu(n)/n), where mu(n) is the Moebius function. This is related to Fibonacci sequence since 1/(1 - x^n - x^(2*n)) expands to a power series whose terms are Fibonacci numbers.
a(n) = (1/n) * Sum_{d|n} mu(n/d) * (Fibonacci(d-1) + Fibonacci(d+1)) = (1/n) * Sum_{d|n} mu(n/d) * Lucas(d). Hence Lucas(n) = Sum_{d|n} d*a(d).
a(n) = round((1/n) * Sum_{d|n} mu(d)*phi^(n/d)), n > 2. - David Broadhurst [Formula corrected by Jason Yuen, Dec 29 2024]
G.f.: Sum_{n >= 1} -mu(n) * log(1 - x^n - x^(2*n))/n.
a(n) = (1/n) * Sum_{d|n} mu(d) * A001610(n/d - 1), n > 1. - R. J. Mathar, Mar 07 2009
For n > 2, a(n) = A060280(n) = A031367(n)/n.