cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006244 Hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 91, 8911, 873181, 85562821, 8384283271, 821574197731, 80505887094361, 7888755361049641, 773017519495770451, 75747828155224454551, 7422514141692500775541, 727330638057709851548461, 71270980015513872950973631, 6983828710882301839343867371, 684343942686450066382748028721
Offset: 1

Views

Author

Keywords

Comments

Equivalently, triangular hex numbers.

Examples

			a(1)=91 because 91 is the sixth centered hexagonal number and the seventh hexagonal number.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*6*(n^2-n): N:=10: u:=5: v:=1: x:=6: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+24*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
    A006244:=-(1-8*z+z**2)/(z-1)/(z**2-98*z+1); # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
    a := n -> (Matrix([[91,1,1]]). Matrix([[99,1,0],[ -99,0,1],[1,0,0]])^n)[1,3]; seq (a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    CoefficientList[Series[(1 - 8*x + x^2)/(1 - 99*x + 99*x^2 - x^3), {x, 0, 20}], x] (* Jean-François Alcover, Feb 26 2015 *)
  • PARI
    Vec(-x*(x^2-8*x+1)/((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Jan 08 2015

Formula

From Richard Choulet, Sep 19 2007: (Start)
We must solve 2*r^2-r=3*p^2-3*p+1, which gives X^2=6*Y^2+3 with X=4*r-1 and Y=2*p-1. We obtain at the same time the following sequences:
X is given by 3, 27, 267, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2-18)^0.5
Y is given by 1, 11, 109, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2+3)^0.5
p is given by 1, 6, 55, 540, ... sequence for which a(n+2)=10*a(n+1)-a(n)-4 and a(n+1)=5*a(n)-2+(24*a(n)^2-24*a(n)+9)^0.5
r is given by 1, 7, 67, 661, ... sequence for which a(n+2)=10*a(n+1)-a(n)-2 and a(n+1)=5*a(n)-1+(24*a(n)^2-12*a(n)-3)^0.5
a(n+2) = 98*a(n+1)-a(n)-6, a(n+1)=49*a(n)-3+5*(96*a(n)^2-12*a(n)-3)^0.5.
G.f.: z*(1-8*z+z^2)/((1-z)*(1-98*z+z^2)). (End)
Define x(n) + y(n)*sqrt(24) = (6+sqrt(24))*(5+sqrt(24))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+6*(s(n)^2-s(n))). - Steven Schlicker, Apr 24 2007
a(n) = (A007667(n+1)-1)/4. - Ralf Stephan, Mar 03 2004
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - Colin Barker, Jan 08 2015

Extensions

Edited by N. J. A. Sloane, Sep 25 2007
More terms from Alois P. Heinz, Aug 14 2008
More terms from Jon E. Schoenfield, Dec 26 2008