cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006277 a(n) = (a(n-1) + 1)*a(n-2).

Original entry on oeis.org

1, 1, 2, 3, 8, 27, 224, 6075, 1361024, 8268226875, 11253255215681024, 93044467205527772332546875, 1047053135870867396062743192203958743681024, 97422501162981936223682742789520433197690551802305989766350860546875
Offset: 0

Views

Author

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7 Cahen's Constant p. 435 and Section 6.10 Quadratic recurrence constants pp. 445-446.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006277_list = 1 : scanl ((*) . (+ 1)) 2 a006277_list -- Jack Willis, Dec 22 2013
    
  • Magma
    [n le 2 select 1 else (Self(n-1) + 1)*Self(n-2): n in [1..15]]; // Vincenzo Librandi, May 23 2019
  • Maple
    A006277 := proc(n) options remember; if n <= 1 then RETURN(1) else A006277(n-2)*(A006277(n-1)+1); fi; end;
  • Mathematica
    a=b=1;lst={a,b};Do[AppendTo[lst,c=a*b+a];a=b;b=c,{n,0,12}];lst (* Vladimir Joseph Stephan Orlovsky, May 06 2010 *)
    RecurrenceTable[{a[n]==a[n-2]*(1+a[n-1]),a[0]==1,a[1]==1},a,{n,0,15}] (* Vaclav Kotesovec, Jan 19 2015 *)
    nxt[{a_,b_}]:={b,a(b+1)}; NestList[nxt,{1,1},15][[All,1]] (* Harvey P. Dale, Jun 20 2021 *)
  • Maxima
    a(n) := if (n = 0 or n = 1) then 1 else a(n-2)*(a(n-1)+1) $
    makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 23 2017 */
    

Formula

Sum_{n>=0} 1/a(n) = 3. - Gerald McGarvey, Jul 20 2004
a(n) = floor(A243967^(phi^n) * A243968^((1-phi)^n)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Jan 19 2015
Sum_{k>=0} (-1)^k/(a(k)*a(k+1)) = A242724. - Amiram Eldar, May 15 2021

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, May 06 2010