A006285 Odd numbers not of form p + 2^k (de Polignac numbers).
1, 127, 149, 251, 331, 337, 373, 509, 599, 701, 757, 809, 877, 905, 907, 959, 977, 997, 1019, 1087, 1199, 1207, 1211, 1243, 1259, 1271, 1477, 1529, 1541, 1549, 1589, 1597, 1619, 1649, 1657, 1719, 1759, 1777, 1783, 1807, 1829, 1859, 1867, 1927, 1969, 1973, 1985, 2171, 2203, 2213, 2231, 2263, 2279, 2293, 2377, 2429, 2465, 2503, 2579, 2669
Offset: 1
Examples
127 is in the sequence since 127 - 2^0 = 126, 127 - 2^1 = 125, 127 - 2^2 = 123, 127 - 2^3 = 119, 127 - 2^4 = 111, 127 - 2^5 = 95, and 127 - 2^6 = 63 are all composite. - _Michael B. Porter_, Aug 29 2016
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 226.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section F13.
- Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., NJ, 2005, pp. 62 & 300.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. G. Van Der Corput, On de Polignac's conjecture, Simon Stevin, Vol. 27 (1950), pp. 99-105.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, see #127.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Yuda Chen, Xiangjun Dai, and Huixi Li, Some results on a conjecture of de Polignac about numbers of the form p + 2^k, arXiv preprint (2024). arXiv:2402.06644 [math.NT]
- Yong-Gao Chen and Xue-Gong Sun, On Romanoff's constant, Journal of Number Theory, Vol. 106, No. 2 (2004), pp. 275-284.
- Roger Crocker, A theorem concerning prime numbers, Mathematics Magazine, Vol. 34, No. 6 (1961), pp. 316-344.
- Yuchen Ding, On a problem of Romanoff type, arXiv:2201.12783 [math.NT], 2022.
- Christian Elsholtz and Jan-Christoph Schlage-Puchta, On Romanov's constant, Mathematische Zeitschrift, Vol. 288 (2018), pp. 713-724; alternative link.
- Paul Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math., Vol. 2 (1950), p. 113-125.
- Laurent Habsieger and Xavier-François Roblot, On integers of the form p+2^k, Acta Arithmetica, Vol. 122, No. 1 (2006), pp. 45-50.
- Laurent Habsieger and Jimena Sivak-Fischler, An effective version of the Bombieri-Vinogradov theorem, and applications to Chen's theorem and to sums of primes and powers of two, Archiv der Mathematik, Vol. 95, No. 6 (2010), pp. 557-566.
- Guang-Shi Lü, On Romanoff's constant and its generalized problem, Chinese Advances in Mathematics, Vol. 36, No. 1 (2007), pp. 94-100.
- János Pintz, A note on Romanov's constant, Acta Mathematica Hungarica, Vol. 112, No. 1-2 (2006), pp. 1-14.
- Paul Pollack, Not Always Buried Deep: A Second Course in Elementary Number Theory, AMS, 2009, p. 201, exercise 34.
- Carl Pomerance, Erdős, van der Corput, and the birth of covering congruences, Joint Mathematics Meetings, Special Session on Covering Congruences, San Diego, CA, January, 2013.
- F. Romani, Computations concerning primes and powers of two, Calcolo, Vol. 20 (1983), pp. 319-336.
- Nikolai Pavlovich Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann., Vol. 109 (1934), pp. 668-678.
- Wikipedia, Romanov's theorem.
Crossrefs
Programs
-
Haskell
a006285 n = a006285_list !! (n-1) a006285_list = filter ((== 0) . a109925) [1, 3 ..] -- Reinhard Zumkeller, May 27 2015
-
Magma
lst:=[]; for n in [1..1973 by 2] do x:=-1; repeat x+:=1; a:=n-2^x; until a lt 1 or IsPrime(a); if a lt 1 then Append(~lst, n); end if; end for; lst; // Arkadiusz Wesolowski, Aug 29 2016
-
Maple
N:= 10000: # to get all terms <= N P:= select(isprime, {2,seq(i,i=3..N,2)}): T:= {seq(2^i,i=0..ilog2(N))}: R:= {seq(i,i=1..N,2)} minus {seq(seq(p+t,p=P),t=T)}: sort(convert(R,list)); # Robert Israel, Sep 23 2016
-
Mathematica
Do[ i = 0; l = Ceiling[ N[ Log[ 2, n ] ] ]; While[ ! PrimeQ[ n - 2^i ] && i < l, i++ ]; If[ i == l, Print[ n ] ], {n, 1, 2000, 2} ] Join[{1},Select[Range[5,1999,2],!MemberQ[PrimeQ[#-2^Range[Floor[ Log[ 2,#]]]], True]&]] (* Harvey P. Dale, Jul 22 2011 *)
-
PARI
isA006285(n,i=1)={ bittest(n,0) && until( isprime(n-i) || nn } \\ M. F. Hasler, Jun 19 2008, updated Apr 12 2017
-
Python
from itertools import count, islice from sympy import isprime def A006285_gen(startvalue=1): # generator of terms return filter(lambda n: not any(isprime(n-(1<A006285_list = list(islice(A006285_gen(),30)) # Chai Wah Wu, Nov 29 2023
Formula
A109925(a(n)) = 0. - Reinhard Zumkeller, May 27 2015
Conjecture: a(n) ~ n*exp(2/log(2)) = n*17.91... - Thomas Ordowski, Feb 02 2021
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 13 2000
Comments