A006327 a(n) = Fibonacci(n) - 3. Number of total preorders.
0, 2, 5, 10, 18, 31, 52, 86, 141, 230, 374, 607, 984, 1594, 2581, 4178, 6762, 10943, 17708, 28654, 46365, 75022, 121390, 196415, 317808, 514226, 832037, 1346266, 2178306, 3524575, 5702884, 9227462, 14930349, 24157814, 39088166, 63245983, 102334152, 165580138
Offset: 4
Examples
G.f. = 2*x^5 + 5*x^6 + 10*x^7 + 18*x^8 + 31*x^9 + 52*x^10 + 86*x^11 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 4..1000
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
- A. B. Vinokur, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.
- Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, arXiv:cs/0410013 [cs.DM], 2004-2005.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Crossrefs
Programs
-
GAP
List([4..45], n-> Fibonacci(n)-3) # G. C. Greubel, Jul 13 2019
-
Magma
[Fibonacci(n)-3: n in [4..45]]; // G. C. Greubel, Jul 13 2019
-
Maple
with(combinat):a:=n->sum(fibonacci(j),j=3..n): seq(a(n),n=2..40); # Zerinvary Lajos, Oct 03 2007 A006327:=(2+z)/(z-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Fibonacci[Range[4, 45]] - 3 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)
-
PARI
a(n)=fibonacci(n)-3 \\ Charles R Greathouse IV, Feb 03 2014
-
Sage
[fibonacci(n)-3 for n in (4..45)] # G. C. Greubel, Jul 13 2019
Formula
G.f.: x^5*(2 + x)/((1-x)*(1-x-x^2)).
a(n) = a(n-1) + a(n-2) + 3.
a(n+3) = Sum_{k=-n+1..n} F(abs(n)+1). - Paul Barry, Oct 24 2007
a(n) = F(4*n) mod F(n+1) = F(n) - (F(n+4)^2 - F(n)^2)/F(2*n+4). - Gary Detlefs, Apr 02 2012
Extensions
Offset corrected by Gary Detlefs, Apr 02 2012
Comments