A006357 Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.
1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, 48620, 139997, 403104, 1160693, 3342081, 9623140, 27708726, 79784098, 229729153, 661478734, 1904652103, 5484227157, 15791202736, 45468956106, 130922641160, 376976720745, 1085461206128, 3125460977225
Offset: 0
References
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,3,-1,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{2,3,-1,-1},{1,4,10,30},30] (* Harvey P. Dale, Nov 18 2013 *)
-
PARI
a(n)=local(p=4);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n) \\ Paul D. Hanna
Formula
G.f.: (1 + 2*x - x^2 - x^3)/( (1 +x)*(1 -3*x +x^3) ). - Simon Plouffe in his 1992 dissertation
a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
a(n) is asymptotic to z(4)*w(4)^n where w(4) = (1/2)/cos(4*Pi/9) and z(4) is the root 1 < x < 2 of P(4, X) = 1 + 27*X - 324*X^2 + 243*X^3. - Benoit Cloitre, Oct 16 2002
Binomial transform of A122167(unsigned): (1, 3, 3, 11, 10, 40, 33, 146, ...). - Gary W. Adamson, Nov 24 2007
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1)))). - Paul Barry, Mar 24 2010
Extensions
Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999
More terms from Paul D. Hanna, Feb 06 2006
Comments