cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006416 Number of loopless rooted planar maps with 3 faces and n vertices and no isthmuses. Also a(n)=T(4,n-3), array T as in A049600.

Original entry on oeis.org

1, 8, 20, 38, 63, 96, 138, 190, 253, 328, 416, 518, 635, 768, 918, 1086, 1273, 1480, 1708, 1958, 2231, 2528, 2850, 3198, 3573, 3976, 4408, 4870, 5363, 5888, 6446, 7038, 7665, 8328, 9028, 9766, 10543, 11360, 12218, 13118, 14061, 15048
Offset: 2

Views

Author

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of an n-set X then, for n>=6, a(n-3) is the number of (n-3)-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Nov 09 2007
a(n) is also the number of triangle subgraphs in a complete graph on n+3 vertices, minus 3 non-incident edges, for n > 2. - Robert H Cowen, Jun 23 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A342980.
Cf. A049600.

Programs

  • Maple
    A006416:=(1+4*z-6*z**2+2*z**3)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation.
    a := n -> hypergeom([-3, n-2], [1], -1);
    seq(round(evalf(a(n),32)), n=2..41); # Peter Luschny, Aug 02 2014
  • Mathematica
    f[n_]:=Sum[i+i^2-6,{i,1,n}]/2;Table[f[n],{n,3,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
    CoefficientList[Series[(1+4x-6x^2+2x^3)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,20,38},50] (* Harvey P. Dale, Aug 25 2013 *)
    f[n_]:= Binomial[n,3] - 3(n-2); Table[{n,f[n]},{n,5,100}]//TableForm (* Robert H Cowen, Jun 23 2018 *)
  • PARI
    Vec((1+4*x-6*x^2+2*x^3)/(1-x)^4 + O(x^40)) \\ Andrew Howroyd, Jul 15 2018

Formula

G.f.: x^2*(1+4*x-6*x^2+2*x^3)/(1-x)^4.
a(n-3) = (1/6)*n^3-(1/2)*n^2-(8/3)*n+6, n=6,7,... - Milan Janjic, Nov 09 2007
a(2)=1, a(3)=8, a(4)=20, a(5)=38, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Aug 25 2013
a(n+2) = Hyper2F1([-3, n], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = binomial(n+3, 3) - 3*(n+1). - Robert H Cowen, Jun 23 2018

Extensions

Name clarified by Andrew Howroyd, Apr 01 2021