A006450 Prime-indexed primes: primes with prime subscripts.
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1031, 1063, 1087, 1153, 1171, 1201, 1217, 1297, 1409, 1433, 1447, 1471
Offset: 1
Examples
a(5) = 31 because a(5) = p(p(5)) = p(11) = 31.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J. S. Kimberley, Table of n, a(n) for n = 1..100000
- R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900 [math.GM], 2014.
- Jonathan Bayless, Dominic Klyve, and Tomás Oliveira e Silva, New Bounds and Computations on Prime-Indexed Primes, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A43, 2013.
- K. A. Broughan and A. R. Barnett, On the subsequence of primes having prime subscripts, JIS 12 (2009) 09.2.3.
- Paul Cooijmans, Numbers.
- Paul Cooijmans, Short Test For Genius.
- R. E. Dressler and S. T. Parker, Primes with a prime subscript, J. ACM 22 (1975) 380-381.
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
- N. Fernandez, More terms of this and other sequences related to A049076.
- A. B. Frizell, The permutations of the natural numbers can not be well ordered, Bull. Amer. Math. Soc. 22 (1915), no. 2, 71-73.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021.
- Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
- J. Shallit, Letter to N. J. A. Sloane, Oct. 1975
- Eric Weisstein's World of Mathematics, Prime formulas, see Cipolla formula.
Crossrefs
Programs
-
Haskell
a006450 = a000040 . a000040 a006450_list = map a000040 a000040_list -- Reinhard Zumkeller, Jan 12 2013
-
Magma
[ NthPrime(NthPrime(n)): n in [1..51] ]; // Jason Kimberley, Apr 02 2010
-
Maple
seq(ithprime(ithprime(i)),i=1..50); # Uli Baum (Uli_Baum(AT)gmx.de), Sep 05 2007 # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
-
Mathematica
Table[ Prime[ Prime[ n ] ], {n, 100} ]
-
PARI
i=0;forprime(p=2,1e4,if(isprime(i++),print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
a=vector(10^3,n,prime(prime(n))) \\ Stanislav Sykora, Dec 09 2015
-
Python
from sympy import prime def a(n): return prime(prime(n)) print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Aug 11 2021
-
Python
# much faster version for initial segment of sequence from sympy import nextprime, isprime def aupton(terms): alst, p, pi = [], 2, 1 while len(alst) < terms: if isprime(pi): alst.append(p) p, pi = nextprime(p), pi+1 return alst print(aupton(10000)) # Michael S. Branicky, Aug 11 2021
Formula
a(n) > n*(log(n))^2, as prime(n) > n*log(n) by Rosser's theorem. - Jonathan Sondow, Jul 11 2012
a(n)/log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 30 2015
Sum_{n>=1} 1/a(n) is in the interval (1.04299, 1.04365) (Bayless et al., 2013). - Amiram Eldar, Oct 15 2020
Comments