A006484 a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.
0, 1, 3, 10, 30, 75, 161, 308, 540, 885, 1375, 2046, 2938, 4095, 5565, 7400, 9656, 12393, 15675, 19570, 24150, 29491, 35673, 42780, 50900, 60125, 70551, 82278, 95410, 110055, 126325, 144336, 164208, 186065, 210035, 236250, 264846, 295963, 329745, 366340
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(n^2 - 3*n + 5)/6: n in [0..50]]; // Vincenzo Librandi, May 16 2011
-
Maple
A006484:=-(1-2*z+5*z**2)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
lst={};Do[AppendTo[lst, n*(n+1)*(n^2-3*n+5)/6], {n, 0, 4!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *) Table[n(n+1) (n^2-3n+5)/6,{n,0,40}] (* Harvey P. Dale, May 29 2019 *)
-
PARI
a(n)=n*(n+1)*(n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 18 2022
Formula
a(n) = (1/6)*(n^4 - 2*n^3 + 2*n^2 + 5*n). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 5*binomial(n+1,4). - Johannes W. Meijer, Apr 29 2011
Comments