A006487 Denominators of greedy Egyptian fraction for square root of 2.
1, 3, 13, 253, 218201, 61323543802, 5704059172637470075854, 178059816815203395552917056787722451335939040, 227569456678536847041583520060628448125647436561262746582115170178319521793841532532509636
Offset: 0
Keywords
Examples
sqrt(2) = 1 + 1/3 + 1/13 + 1/253 + 1/218201 + ... . - _Jon E. Schoenfield_, Dec 26 2014
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Manfred Scheucher, Table of n, a(n) for n = 0..11
- Manfred Scheucher, Table of n, a(n) for n = 0..14
- Manfred Scheucher, Sage Script.
- D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.
- Eric Weisstein's World of Mathematics, Egyptian Fraction.
- Index entries for sequences related to Egyptian fractions
Programs
-
Maple
a[0]:= 1; for n from 1 to 10 do v:= ceil(1/(sqrt(2)-add(1/a[i],i=0..n-1))); while not v::integer do Digits:= 2*Digits; v:= ceil(1/(sqrt(2)-add(1/a[i],i=0..n-1))) od; a[n]:= v; od: seq(a[i],i=0..10); # Robert Israel, Aug 17 2015
-
Mathematica
lst={};k=N[Sqrt[2],1000];Do[s=Ceiling[1/k];AppendTo[lst,s];k=k-1/s,{n,12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 02 2009 *)
Formula
a(n) = ceiling(1/(sqrt(2) - Sum_{j=0..n-1} 1/a(j))). - Jon E. Schoenfield, Dec 26 2014
Extensions
a(8) from Manfred Scheucher, Aug 17 2015
Comments