cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006487 Denominators of greedy Egyptian fraction for square root of 2.

Original entry on oeis.org

1, 3, 13, 253, 218201, 61323543802, 5704059172637470075854, 178059816815203395552917056787722451335939040, 227569456678536847041583520060628448125647436561262746582115170178319521793841532532509636
Offset: 0

Views

Author

Keywords

Comments

Conjecture: Let a(n) = 2^2^(n + b(n)), then b(n) converges to a constant that is about 0.2163... - Manfred Scheucher, Aug 17 2015

Examples

			sqrt(2) = 1 + 1/3 + 1/13 + 1/253 + 1/218201 + ... . - _Jon E. Schoenfield_, Dec 26 2014
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a[0]:= 1;
    for n from 1 to 10 do
      v:= ceil(1/(sqrt(2)-add(1/a[i],i=0..n-1)));
      while not v::integer do
        Digits:= 2*Digits;
        v:= ceil(1/(sqrt(2)-add(1/a[i],i=0..n-1)))
      od;
      a[n]:= v;
    od:
    seq(a[i],i=0..10); # Robert Israel, Aug 17 2015
  • Mathematica
    lst={};k=N[Sqrt[2],1000];Do[s=Ceiling[1/k];AppendTo[lst,s];k=k-1/s,{n,12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 02 2009 *)

Formula

a(n) = ceiling(1/(sqrt(2) - Sum_{j=0..n-1} 1/a(j))). - Jon E. Schoenfield, Dec 26 2014

Extensions

a(8) from Manfred Scheucher, Aug 17 2015