cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 115 results. Next

A040000 a(0)=1; a(n)=2 for n >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Continued fraction expansion of sqrt(2) is 1 + 1/(2 + 1/(2 + 1/(2 + ...))).
Inverse binomial transform of Mersenne numbers A000225(n+1) = 2^(n+1) - 1. - Paul Barry, Feb 28 2003
A Chebyshev transform of 2^n: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). - Paul Barry, Oct 31 2004
An inverse Catalan transform of A068875 under the mapping g(x)->g(x(1-x)). A068875 can be retrieved using the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108. A040000 and A068875 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
Sequence of electron arrangement in the 1s 2s and 3s atomic subshells. Cf. A001105, A016825. - Jeremy Gardiner, Dec 19 2004
Binomial transform of A165326. - Philippe Deléham, Sep 16 2009
Let m=2. We observe that a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). Then there is a link with A113311 and A115291: it is the same formula with respectively m=3 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
With offset 1: number of permutations where |p(i) - p(i+1)| <= 1 for n=1,2,...,n-1. This is the identical permutation and (for n>1) its reversal.
Equals INVERT transform of bar(1, 1, -1, -1, ...).
Eventual period is (2). - Zak Seidov, Mar 05 2011
Also decimal expansion of 11/90. - Vincenzo Librandi, Sep 24 2011
a(n) = 3 - A054977(n); right edge of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
With offset 1: minimum cardinality of the range of a periodic sequence with (least) period n. Of course the range's maximum cardinality for a purely periodic sequence with (least) period n is n. - Rick L. Shepherd, Dec 08 2014
With offset 1: n*a(1) + (n-1)*a(2) + ... + 2*a(n-1) + a(n) = n^2. - Warren Breslow, Dec 12 2014
With offset 1: decimal expansion of gamma(4) = 11/9 where gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Sep 11 2016
a(n) equals the number of binary sequences of length n where no two consecutive terms differ. Also equals the number of binary sequences of length n where no two consecutive terms are the same. - David Nacin, May 31 2017
a(n) is the period of the continued fractions for sqrt((n+2)/(n+1)) and sqrt((n+1)/(n+2)). - A.H.M. Smeets, Dec 05 2017
Also, number of self-avoiding walks and coordination sequence for the one-dimensional lattice Z. - Sean A. Irvine, Jul 27 2020

Examples

			sqrt(2) = 1.41421356237309504... = 1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 21 2009
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
11/90 = 0.1222222222222222222... - _Natan Arie Consigli_, Sep 11 2016
		

References

  • A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 276-278.

Crossrefs

Convolution square is A008574.
See A003945 etc. for (1+x)/(1-k*x).
From Jaume Oliver Lafont, Mar 26 2009: (Start)
Sum_{0<=k<=n} a(k) = A005408(n).
Prod_{0<=k<=n} a(k) = A000079(n). (End)
Cf. A000674 (boustrophedon transform).
Cf. A001333/A000129 (continued fraction convergents).
Cf. A000122, A002193 (sqrt(2) decimal expansion), A006487 (Egyptian fraction).
Cf. Other continued fractions for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040002 (contfrac(sqrt(5)) = (2,4,4,...)), A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).

Programs

  • Haskell
    a040000 0 = 1; a040000 n = 2
    a040000_list = 1 : repeat 2  -- Reinhard Zumkeller, May 07 2012
  • Maple
    Digits := 100: convert(evalf(sqrt(2)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[2],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    a[ n_] := 2 - Boole[n == 0]; (* Michael Somos, Dec 28 2014 *)
    PadRight[{1},120,2] (* or *) RealDigits[11/90, 10, 120][[1]] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    {a(n) = 2-!n}; /* Michael Somos, Apr 16 2007 */
    
  • PARI
    a(n)=1+sign(n)  \\ Jaume Oliver Lafont, Mar 26 2009
    
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2)); for (n=0, 20000, write("b040000.txt", n, " ", x[n+1]));  \\ Harry J. Smith, Apr 21 2009
    

Formula

G.f.: (1+x)/(1-x). - Paul Barry, Feb 28 2003
a(n) = 2 - 0^n; a(n) = Sum_{k=0..n} binomial(1, k). - Paul Barry, Oct 16 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*2^(n-2*k)/(n-k). - Paul Barry, Oct 31 2004
A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A068875(n-k). - Paul Barry, Nov 14 2004
From Michael Somos, Apr 16 2007: (Start)
Euler transform of length 2 sequence [2, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)*(u+v) - 2*v*(u-w).
E.g.f.: 2*exp(x) - 1.
a(n) = a(-n) for all n in Z (one possible extension to n<0). (End)
G.f.: (1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 26 2009
G.f.: exp(2*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = Sum_{k=0..n} A108561(n,k)*(-1)^k. - Philippe Deléham, Nov 17 2013
a(n) = 1 + sign(n). - Wesley Ivan Hurt, Apr 16 2014
10 * 11/90 = 11/9 = (11/2 R)/(9/2 R) = Cp(4)/Cv(4) = A272005/A272004, with R = A081822 (or A070064). - Natan Arie Consigli, Sep 11 2016
a(n) = A001227(A000040(n+1)). - Omar E. Pol, Feb 28 2018

A269993 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 3, 9, 74, 8098, 101114070, 10080916639334518, 234737156891222571756748160861129, 104728182461244680288139397973895577148266725366426255244889745185
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
Guide to related sequences:
r(k) x denominators
1 sqrt(1/2) A069139
1 sqrt(1/3) A144983
1 sqrt(2) - 1 A006487
1 sqrt(3) - 1 A118325
1 tau - 1 A117116
1 1/Pi A006524
1 Pi-3 A001466
1 1/e A006526
1 e - 2 A006525
1 log(2) A118324
1 Euler constant A110820
1 (1/2)^(1/3) A269573
.
1/k sqrt(1/2) A269993
1/k sqrt(1/3) A269994
1/k sqrt(2) - 1 A269995
1/k sqrt(3) - 1 A269996
1/k tau - 1 A269997
1/k 1/Pi A269998
1/k Pi-3 A269999
1/k 1/e A270001
1/k e - 2 A270002
1/k log(2) A270314
1/k Euler constant A270315
1/k (1/2)^(1/3) A270316
.
Using the 12 choices for x shown above (that is, sqrt(1/2) to (1/2)^(1/3)), the denominator sequence of the r-Egyptian fraction for x appears for each of the following sequences (r(k)):
r(k) = 1 (see above)
r(k) = 1/k (see above)
r(k) = 2^(1-k): A270347-A270358
r(k) = 1/Fibonacci(k+1): A270394-A270405
r(k) = 1/prime(k): A270476-A270487
r(k) = 1/k!: A270517-A270527 (A000027 for x = e - 2)
r(k) = 1/(2k-1): A270546-A270557
r(k) = 1/(k+1): A270580-A270591

Examples

			sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k;
    x = sqrt(1/2);
    f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k));
    n(x, k) = ceil(r(k)/f(x, k - 1));
    for(k = 1, 10, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017, translated from Mathematica code

A248235 Egyptian fraction representation of sqrt(5) (A002163) using a greedy function.

Original entry on oeis.org

2, 5, 28, 2828, 11765225, 244616741135815, 200345939091917238204751820525, 58201747163932603551486315260692070868016224421408235882974, 3950825087286888657146721201016118914863842749907092675300186489072730656660851348699680127901879302396406080621599015
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
Cf. A002163.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 5]]

A248322 Egyptian fraction representation of sqrt(99) (A010550) using a greedy function.

Original entry on oeis.org

9, 2, 3, 9, 185, 40782, 1682066752, 6363269744807224762, 71990770113177468702243288679736023556, 7052581923050601721615256905785412578772858487621807510338728141989919040612
Offset: 0

Views

Author

Robert G. Wilson v, Oct 05 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 99]]

A069139 Egyptian fraction for square root of 1/2.

Original entry on oeis.org

2, 5, 141, 68575, 32089377154, 1644444237306316731482, 65593236350142721999718859354569312622907814
Offset: 0

Views

Author

Henry Bottomley, Apr 08 2002

Keywords

Examples

			a(3) = 68575 since sqrt(1/2) = 0.707106781186..., 1/2 + 1/5 + 1/141 + 1/68574 = 0.707106781368... (which is too much) and 1/2 + 1/5 + 1/141 + 1/68575 = 0.707106781155... (which is not too much).
		

Crossrefs

Cf. A006487, A010503 (sqrt(1/2)).

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (* Artur Jasinski, Sep 22 2008 *)

Formula

a(n) = ceiling(1/(1/sqrt(2) - Sum_{i=0..n-1} 1/a(i))).

A144835 Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956).

Original entry on oeis.org

2, 10, 127, 18838, 522338493, 727608914652776081, 990935377560451600699026552443764271, 1223212384013602554473872691328685513734082755736750146553750539914774364
Offset: 1

Views

Author

Artur Jasinski, Sep 22 2008

Keywords

Examples

			1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ...
		

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
  • PARI
    x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ Charles R Greathouse IV, Nov 08 2013

A144984 Denominators of an Egyptian fraction for 1/sqrt(5) (A020762).

Original entry on oeis.org

3, 9, 362, 148807, 432181530536, 615828580117398011389583, 385329014801969222669766835659574445455872858297
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[5], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A145003 Denominators of an Egyptian fraction for 1/sqrt(29) = 0.185695338... (A020786).

Original entry on oeis.org

6, 53, 6221, 891830563, 950677235679298964, 2245647960428048728674383451656707058, 11636905679093503238901947768600244923435901955366623291532461461126244496
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[29], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A144983 Denominators of greedy Egyptian fraction for 1/sqrt(3) (A020760).

Original entry on oeis.org

2, 13, 2341, 41001128, 3352885935529869, 17147396444547741051849884001699, 1847333322606272250132077006229901193256553492442739965269739579
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[3], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A248250 Egyptian fraction representation of sqrt(22) (A010478) using a greedy function.

Original entry on oeis.org

4, 2, 6, 43, 2028, 5477762, 40063230724280, 10039617492048087897098971783, 598943577818423089223821862011302605314284839297545338532, 451273778419286656581820003198742640276389207705020449590295850757882195737121214614786626350432663721793231915121
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 22]]
Showing 1-10 of 115 results. Next