cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006530 Gpf(n): greatest prime dividing n, for n >= 2; a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 3, 73, 37, 5, 19, 11, 13, 79, 5, 3, 41, 83, 7, 17, 43
Offset: 1

Views

Author

Keywords

Comments

The initial term a(1)=1 is purely conventional: The unit 1 is not a prime number, although it has been considered so in the past. 1 is the empty product of prime numbers, thus 1 has no largest prime factor. - Daniel Forgues, Jul 05 2011
Greatest noncomposite number dividing n, (cf. A008578). - Omar E. Pol, Aug 31 2013
Conjecture: Let a, b be nonzero integers and f(n) denote the maximum prime factor of a*n + b if a*n + b <> 0 and f(n)=0 if a*n + b=0 for any integer n. Then the set {n, f(n), f(f(n)), ...} is finite of bounded size. - M. Farrokhi D. G., Jan 10 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section IV.1.
  • H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 210.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000040, A020639 (smallest prime divisor), A034684, A028233, A034699, A053585.
Cf. A046670 (partial sums), A104350 (partial products).
See A385503 for "popular" primes.

Programs

  • Magma
    [ #f eq 0 select 1 else f[ #f][1] where f is Factorization(n): n in [1..86] ]; // Klaus Brockhaus, Oct 23 2008
    
  • Maple
    with(numtheory,divisors); A006530 := proc(n) local i,t1,t2,t3,t4,t5; t1 := divisors(n); t2 := convert(t1,list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then return t3[t4+1-i]; fi; od; 1; end;
    # alternative
    A006530 := n->max(1,op(numtheory[factorset](n))); # Peter Luschny, Nov 02 2010
  • Mathematica
    Table[ FactorInteger[n][[ -1, 1]], {n, 100}] (* Ray Chandler, Nov 12 2005 and modified by Robert G. Wilson v, Jul 16 2014 *)
  • PARI
    A006530(n)=if(n>1,vecmax(factor(n)[,1]),1) \\ Edited to cover n=1. - M. F. Hasler, Jul 30 2015
    
  • Python
    from sympy import factorint
    def a(n): return 1 if n == 1 else max(factorint(n))
    print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Aug 08 2022
    
  • SageMath
    def A006530(n): return list(factor(n))[-1][0] if n > 1 else 1
    print([A006530(n) for n in range(1, 87)])  # Peter Luschny, Jan 07 2024
  • Scheme
    ;; The following uses macro definec for the memoization (caching) of the results. A naive implementation of A020639 can be found under that entry. It could be also defined with definec to make it faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
    (definec (A006530 n) (let ((spf (A020639 n))) (if (= spf n) spf (A006530 (/ n spf)))))
    ;; Antti Karttunen, Mar 12 2017
    

Formula

a(n) = A027748(n, A001221(n)) = A027746(n, A001222(n)); a(n)^A071178(n) = A053585(n). - Reinhard Zumkeller, Aug 27 2011
a(n) = A000040(A061395(n)). - M. F. Hasler, Jan 16 2015
a(n) = n + 1 - Sum_{k=1..n} (floor((k!^n)/n) - floor(((k!^n)-1)/n)). - Anthony Browne, May 11 2016
n/a(n) = A052126(n). - R. J. Mathar, Oct 03 2016
If A020639(n) = n [when n is 1 or a prime] then a(n) = n, otherwise a(n) = a(A032742(n)). - Antti Karttunen, Mar 12 2017
a(n) has average order Pi^2*n/(12 log n) [Brouwer]. See also A046670. - N. J. A. Sloane, Jun 26 2017

Extensions

Edited by M. F. Hasler, Jan 16 2015