A006564 Icosahedral numbers: a(n) = n*(5*n^2 - 5*n + 2)/2.
1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, 6384, 7890, 9616, 11577, 13788, 16264, 19020, 22071, 25432, 29118, 33144, 37525, 42276, 47412, 52948, 58899, 65280, 72106, 79392, 87153, 95404, 104160, 113436, 123247, 133608
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
a006564 n = n * (5 * n * (n - 1) + 2) `div` 2 -- Reinhard Zumkeller, Jun 16 2013
-
Magma
[(5*n^3-5*n^2+2*n)/2: n in [1..100]] // Vincenzo Librandi, Nov 21 2010
-
Maple
A006564:=(1+8*z+6*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[n (5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,12,48,124},40] (* Harvey P. Dale, May 26 2011 *)
-
PARI
a(n)=5*n^2*(n-1)/2+n \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = C(n+2,3) + 8*C(n+1,3) + 6*C(n,3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(0)=1, a(1)=12, a(2)=48, a(3)=124. - Harvey P. Dale, May 26 2011
G.f.: x*(6*x^2 + 8*x + 1)/(x-1)^4. - Harvey P. Dale, May 26 2011
E.g.f.: x*(2 + 10*x + 5*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
Sum_{n>=1} 1/a(n) = A175578. - Amiram Eldar, Jan 03 2022
Comments