cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006597 a(n) = n^2*(5*n-3)/2.

Original entry on oeis.org

0, 1, 14, 54, 136, 275, 486, 784, 1184, 1701, 2350, 3146, 4104, 5239, 6566, 8100, 9856, 11849, 14094, 16606, 19400, 22491, 25894, 29624, 33696, 38125, 42926, 48114, 53704, 59711, 66150, 73036, 80384, 88209, 96526, 105350, 114696, 124579, 135014, 146016, 157600
Offset: 0

Views

Author

Keywords

Comments

Structured heptagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Apart from 0, partial sums of A220083. - Bruno Berselli, Dec 11 2012

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 29.

Crossrefs

Cf. A100177 - structured prisms; A100145 for more on structured numbers.
Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = (1/6)*(15*n^3 - 9*n^2). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
G.f.: x*(1+10*x+4*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(5*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 1.1080093773051638036... = (sqrt(5*(5 - 2*sqrt(5)))*Pi - Pi^2 - 5*sqrt(5)*arccoth(sqrt(5)) + (25*log(5))/2)/9. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 12*x + 5*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A006592(n)/4. (End)

Extensions

Name corrected by Arkadiusz Wesolowski, Jul 20 2011