cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006636 a(n) = (n + 1)*(n + 2)*(n + 4)*(n + 8)*(n + 15)/120.

Original entry on oeis.org

8, 36, 102, 231, 456, 819, 1372, 2178, 3312, 4862, 6930, 9633, 13104, 17493, 22968, 29716, 37944, 47880, 59774, 73899, 90552, 110055, 132756, 159030, 189280, 223938, 263466, 308357, 359136, 416361, 480624, 552552, 632808, 722092, 821142, 930735
Offset: 0

Views

Author

Keywords

Comments

Former name: From generalized Catalan numbers. - G. C. Greubel, Sep 03 2025

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A181289.

Programs

  • Magma
    A006636:= func< n | (n+1)*(n+2)*(n+4)*(n+8)*(n+15)/120 >;
    [A006636(n): n in [0..40]]; // G. C. Greubel, Sep 03 2025
    
  • Mathematica
    Table[(n+1)*(n+2)*(n+4)*(n+8)*(n+15)/120, {n,0,40}] (* G. C. Greubel, Sep 03 2025 *)
  • SageMath
    def A006636(n): return (n+1)*(n+2)*(n+4)*(n+8)*(n+15)//120
    print([A006636(n) for n in range(41)]) # G. C. Greubel, Sep 03 2025

Formula

From Sean A. Irvine, May 30 2017: (Start)
a(n) = (n + 1)*(n + 2)*(n + 4)*(n + 8)*(n + 15)/120.
G.f.: (2 - x)^3/(1 - x)^6. (End)
E.g.f.: exp(x)*(960 + 3360*x + 2280*x^2 + 500*x^3 + 40*x^4 + x^5)/120. - Stefano Spezia, Oct 15 2022

Extensions

a(6) and a(8) corrected and more terms from Sean A. Irvine, May 30 2017
New name by G. C. Greubel, Sep 03 2025