cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181289 Triangle read by rows: T(n,k) is the number of 2-compositions of n having length k (0 <= k <= n).

Original entry on oeis.org

1, 0, 2, 0, 3, 4, 0, 4, 12, 8, 0, 5, 25, 36, 16, 0, 6, 44, 102, 96, 32, 0, 7, 70, 231, 344, 240, 64, 0, 8, 104, 456, 952, 1040, 576, 128, 0, 9, 147, 819, 2241, 3400, 2928, 1344, 256, 0, 10, 200, 1372, 4712, 9290, 11040, 7840, 3072, 512, 0, 11, 264, 2178, 9108, 22363
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. The length of the 2-composition is the number of columns.
From Tom Copeland, Sep 06 2011: (Start)
R(t,z) = (1-z)^2 / ((1+t)*(1-z)^2-1) = 1/(t - (2*z + 3*z^2 + 4*z^3 + 5*z^4 + ...)) = 1/t + (1/t)^2*2*z + (1/t)^3*(4+3t)*z^2 + (1/t)^4*(8+12*t+4*t^2)*z^3 + ... gives row reversed polynomials of A181289 with G(t,z) = R(1/t,z)/t.
R(t,z) is related to generators for A033282 and A001003 (t=1) and can be umbrally extended to give a partition generator for A133437. (End)
A refined, reverse version of this array is given in A253722. - Tom Copeland, May 02 2015
The infinitesimal generator (infinigen) for the face polynomials of associahedra A086810/A033282, read as decreasing powers, (and for the dual simplicial complex read as increasing powers) can be formed from the row polynomials P(n,t) of this entry. This type of infinigen is presented in A145271 for general sets of binomial Sheffer polynomials. This specific infinigen is presented in analytic form in A086810. Given the column vector of row polynomials V = (P(0,t) = 1, P(1,y) = 2 t, P(2,y) = 3 t + 4 t^2, P(3,y) = 4 t + 12 t^2 + 8 t^3, ...), form the lower triangular matrix M(n,k) = V(n-k,n-k), i.e., diagonally multiply the matrix with all ones on the diagonal and below by the components of V. Form the matrix MD by multiplying A132440^Transpose = A218272 = D (representing derivation of o.g.f.s) by M, i.e., MD = M*D. The non-vanishing component of the first row of (MD)^n * V / (n+1)! is the n-th face polynomial. - Tom Copeland, Dec 11 2015
T is the convolution triangle of the positive integers starting at 2 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			Triangle starts:
  1;
  0,  2;
  0,  3,   4;
  0,  4,  12,    8;
  0,  5,  25,   36,   16;
  0,  6,  44,  102,   96,    32;
  0,  7,  70,  231,  344,   240,    64;
  0,  8, 104,  456,  952,  1040,   576,   128;
  0,  9, 147,  819, 2241,  3400,  2928,  1344,   256;
  0, 10, 200, 1372, 4712,  9290, 11040,  7840,  3072,  512;
  0, 11, 264, 2178, 9108, 22363, 34332, 33488, 20224, 6912, 1024;
		

Crossrefs

Cf. A003480 (row sums), A181290.
Cf. A000297 (column 3), A006636 (column 4), A006637 (column 5).

Programs

  • Maple
    T := proc (n, k) if k <= n then sum((-1)^j*2^(k-j)*binomial(k, j)*binomial(n+k-j-1, 2*k-1), j = 0 .. k) else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n + 1); # Peter Luschny, Oct 19 2022
  • Mathematica
    Table[Sum[(-1)^j*2^(k - j) Binomial[k, j] Binomial[n + k - j - 1, 2 k - 1], {j, 0, k}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    T_xt(max_row) = {my(N=max_row+1, x='x+O('x^N), h=(1-x)^2/((1-x)^2 - t*x*(2-x))); vector(N, n, Vecrev(polcoeff(h, n-1)))}
    T_xt(10) \\ John Tyler Rascoe, Apr 05 2025

Formula

T(n,k) = Sum_{j=0..k} (-1)^j*2^(k-j)*binomial(k,j)*binomial(n+k-j-1, 2*k-1) (0 <= k <= n).
G.f.: G(t,x) = (1-x)^2/((1-x)^2 - t*x*(2-x)).
G.f. of column k = x^k*(2-x)^k/(1-x)^{2k} (k>=1) (we have a Riordan array).
Recurrences satisfied by the numbers u_{n,k}=T(n,k) can be found in the Castiglione et al. reference.
Sum_{k=0..n} k*T(n,k) = A181290(n).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=0, T(1,1)=2, T(2,0)=0, T(1,1)=3, T(2,2)=4, T(n,k)=0, if k < 0 or if k > n. - Philippe Deléham, Nov 29 2013

A006637 Expansion of (2 - x)^4/(1 - x)^8.

Original entry on oeis.org

16, 96, 344, 952, 2241, 4712, 9108, 16488, 28314, 46552, 73788, 113360, 169507, 247536, 354008, 496944, 686052, 932976, 1251568, 1658184, 2172005, 2815384, 3614220, 4598360, 5802030, 7264296, 9029556, 11148064, 13676487, 16678496, 20225392, 24396768, 29281208
Offset: 0

Views

Author

Keywords

Comments

Former name: From generalized Catalan numbers. - G. C. Greubel, Sep 03 2025

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A006637:= func< n | (n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)/5040 >;
    [A006637(n): n in [0..40]]; // G. C. Greubel, Sep 03 2025
    
  • Mathematica
    Table[(n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)/7!, {n,0,40}] (* G. C. Greubel, Sep 03 2025 *)
  • SageMath
    def A006637(n): return (n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)//5040
    print([A006637(n) for n in range(41)]) # G. C. Greubel, Sep 03 2025

Formula

G.f.: (2-x)^4/(1-x)^8. - Sean A. Irvine, May 31 2017
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 18 2022
From G. C. Greubel, Sep 03 2025: (Start)
a(n) = Sum_{k=0..4} binomial(4, k)*binomial(n+k+3, k+3).
a(n) = (1/7!)*(n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2 + 31*n + 192).
E.g.f.: (1/7!)*(80640 + 403200*x + 423360*x^2 + 161280*x^3 + 27090*x^4 + 2142*x^5 + 77*x^6 + x^7)*exp(x). (End)

Extensions

a(6) and a(8) corrected and more terms from Sean A. Irvine, May 31 2017
New name by G. C. Greubel, Sep 03 2025
Showing 1-2 of 2 results.