cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006668 Exponential self-convolution of Pell numbers (divided by 2).

Original entry on oeis.org

0, 0, 1, 6, 32, 160, 784, 3808, 18432, 89088, 430336, 2078208, 10035200, 48455680, 233967616, 1129701376, 5454692352, 26337607680, 127169265664, 614027624448, 2964787822592, 14315262312448, 69120201588736
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A084150. - Paul Barry, May 16 2003

Crossrefs

Programs

  • Magma
    [Floor(((2+Sqrt(8))^n+(2-Sqrt(8))^n-2^(n+1))/16): n in [0..30] ]; // Vincenzo Librandi, Aug 20 2011
  • Mathematica
    LinearRecurrence[{6,-4,-8},{0,0,1},30] (* Harvey P. Dale, Jul 15 2014 *)
    Table[2^(n-4)*(LucasL[n, 2] - 2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)

Formula

a(n) = ((2+sqrt(8))^n+(2-sqrt(8))^n-2^(n+1))/16; E.g.f. : exp(2x)(sinh(sqrt(2)x))^2/4=(exp(x)sinh(sqrt(2)x)/sqrt(2))^2/2. - Paul Barry, May 16 2003
G.f.: x^2/((1-2*x)*(1-4*x-4*x^2)). - Bruno Berselli, Aug 20 2011
a(n) = A006646(n)/2 = 2^(n-4)*(A002203(n) - 2). - Vladimir Reshetnikov, Oct 07 2016

A084150 A Pell related sequence.

Original entry on oeis.org

0, 0, 1, 3, 14, 50, 199, 749, 2892, 11028, 42301, 161799, 619706, 2372006, 9081955, 34767953, 133109592, 509594856, 1950956857, 7469077707, 28594853414, 109473250778, 419110475455, 1604533706357, 6142840740900, 23517417426300
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of expansion of (sinh(sqrt(2)x))^2/4 = (0, 0, 1, 0, 8, 0, 64, ...). Inverse binomial transform of A006668.

Crossrefs

Programs

  • Magma
    [n le 3 select Floor((n-1)/2) else 3*Self(n-1) +5*Self(n-2) -7*Self(n-3): n in [1..41]]; // G. C. Greubel, Oct 11 2022
    
  • Mathematica
    LinearRecurrence[{3,5,-7}, {0,0,1}, 41] (* G. C. Greubel, Oct 11 2022 *)
  • SageMath
    A084058 = BinaryRecurrenceSequence(2,7,1,1)
    def A084150(n): return (A084058(n) - 1)/8
    [A084150(n) for n in range(41)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = ( (1+sqrt(8))^n + (1-sqrt(8))^n - 2 )/16.
E.g.f.: (1/4)*exp(x)*( sinh(sqrt(2)*x) )^2.
G.f.: x^2 / ( (1-x)*(1-2*x-7*x^2) ). - R. J. Mathar, Feb 05 2011
a(n) = (A015519(n) - A015519(n-1) - 1)/8 = (A084058(n) - 1)/8. - G. C. Greubel, Oct 11 2022
Showing 1-2 of 2 results.