A000791 Ramsey numbers R(3,n).
1, 3, 6, 9, 14, 18, 23, 28, 36
Offset: 1
References
- G. Berman and K. D. Fryer, Introduction to Combinatorics. Academic Press, NY, 1972, p. 175.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 288.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 840.
- Brendan McKay, personal communication.
- H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 42.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vigleik Angeltveit, R(3,10) <= 41, arXiv:2401.00392 [math.CO], 2023.
- Thomas Bloom, Problem 165, Problem 544, Problem 553, and Problem 986, Erdős Problems.
- Geoff Exoo, Ramsey Numbers
- Robert Getschmann, Enumeration of Small Ramsey Graphs (Wayback Machine archive)
- Jan Goedgebeur and Stanisław P. Radziszowski, New Computational Upper Bounds for Ramsey Numbers R(3,k), arXiv:1210.5826 [math.CO], 2012-2013.
- R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math., 7 (1955), 1-7.
- J. G. Kalbfleisch, Construction of special edge-chromatic graphs, Canad. Math. Bull., 8 (1965), 575-584.
- Jeong Han Kim, The Ramsey number R(3, t) has order of magnitude t^2/log t, Random Structures & Algorithms Vol. 7, No. 3 (1995), pp. 173-207.
- Richard L. Kramer, Ricardo's Ramsey Number Page (Wayback Machine archive)
- Imre Leader, Friends and Strangers
- Math Reference Project, Ramsey Numbers
- Mathematical Database, Ramsey's Theory
- Brendan McKay, Email to N. J. A. Sloane, Jul. 1991
- Online Dictionary of Combinatorics, Ramsey's Theorem (Wayback Machine archive)
- Ivars Peterson, Math Trek, Party Games, Science News Online, Vol. 156, No. 23, Dec 04 1999.
- Ivars Peterson, Math Trek, Party Games, Dec 06 1999.
- Stanisław Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, Dynamic Surveys, #DS1: Jan 12, 2014.
- Terence Tao, Erdős problem database, see no. 165, 544, 553, 986.
- Eric Weisstein's World of Mathematics, Ramsey Number
- Wikipedia, Ramsey's Theorem.
- Jin Xu and C. K. Wong, Self-complementary graphs and Ramsey numbers I, Discrete Math., 223 (2000), 309-326.
Extensions
a(1) = 1 added by N. J. A. Sloane, Nov 05 2023
Comments