cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006896 a(n) is the number of hierarchical linear models on n labeled factors allowing 2-way interactions (but no higher order interactions); or the number of simple labeled graphs with nodes chosen from an n-set.

Original entry on oeis.org

1, 2, 5, 18, 113, 1450, 40069, 2350602, 286192513, 71213783666, 35883905263781, 36419649682706466, 74221659280476136241, 303193505953871645562970, 2480118046704094643352358501, 40601989176407026666590990422106, 1329877330167226219547875498464516481
Offset: 0

Views

Author

Keywords

Comments

From Petros Hadjicostas, Apr 09 2020: (Start)
Hierarchical log-linear models are by definition nonempty because they always include an "intercept" (or "overall effect").
Note that this is different from the number of graphical hierarchical log-linear models on n labeled factors as defined in the referenced Wikipedia article about log-linear models, "A log-linear model is graphical if, whenever the model contains all two-factor terms generated by a higher-order interaction, the model also contains the higher-order interaction." See also Gauraha (2016). (End) (Comment revised by N. J. A. Sloane, Apr 23 2020.)

Examples

			From _Petros Hadjicostas_, Apr 09 2020: (Start)
For n = 2, consider the pair of nodes {X, Y}. The simple labeled graphs with nodes from this set are the empty graph G1 = [], G2 = [X], G3 = [Y], G4 = [X, Y], and G5 = [X, Y, X-Y]. Thus a(2) = 5.
For n = 3, consider the three nodes {X, Y, Z}. The simple labeled graphs with nodes from this set are G1 = [], G2 = [X], G3 = [Y], G4 = [Z], G5 = [X, Y], G6 = [X, Z], G7 = [Y, Z], G8 = [X, Y, X-Y], G9 = [X, Z, X-Z], G10 = [Y, Z, Y-Z], G11 = [X, Y, Z], G12 = [X-Y Z], G13 = [X, Y,Z, X-Z], G14 = [X, Y, Z, Y-Z ], G15 = [X, Y, Z, Y-X-Z], G16 = [X, Y, Z, X-Y-Z], G17 = [Z, Y, Z, X-Z-Y], and G18 = [X, Y, Z, triangle with nodes X, Y, Z]. Thus a(3) = 18.
In Wickramasinghe (2008), for n = 2, all A014466(2) = 5 hierarchical log-linear models on two factors X and Y, which appear on p. 18, are trivially graphical; thus a(2) = 5.
For n = 3, among the A014466(3) = 19 hierarchical log-linear models on three factors X, Y, and Z, which appear on p. 36, only Model 18 is not graphical because it contains the X-Y, Y-Z, and Z-X interactions but does not contain the 3-way X-Y-Z interaction; thus a(3) = 19 - 1 = 18. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A004140, A006897 (unlabeled case).

Programs

  • Maple
    A006896 := proc(n) local k; 1+binomial(n,1) +add(binomial(n,k)*2^(1/2*k*(k-1)), k = 2 .. n) end; seq (A006896(n), n=0..20);
  • Mathematica
    nn=20;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];Range[0,nn]! CoefficientList[Series[Exp[x]g,{x,0,nn}],x]  (* Geoffrey Critzer, Apr 11 2012 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*2^((k^2-k)/2))

Formula

a(n) = 1 + C(n, 1) + C(n, 2)*2 + C(n, 3)*2^3 + C(n, 4)*2^6 + ... + C(n, n)*2^(n*(n-1)/2).
a(n) = 1 + A004140(n).
E.g.f.: exp(x)*A(x) where A(x) is e.g.f. for A006125. - Geoffrey Critzer, Apr 11 2012.

Extensions

Error in formula line corrected Sep 15 1997 (thanks to R. K. Guy for pointing this out)
Name expanded by Petros Hadjicostas, Apr 08 2020
Edited by N. J. A. Sloane, Apr 23 2020