A006897
a(n) is the number of hierarchical linear models on n unlabeled factors allowing 2-way interactions (but no higher order interactions); or the number of unlabeled simple graphs with <= n nodes.
Original entry on oeis.org
1, 2, 4, 8, 19, 53, 209, 1253, 13599, 288267, 12293435, 1031291299, 166122463891, 50668153831843, 29104823811067331, 31455590793615376099, 64032471295321173271027, 245999896624828253856990803, 1787823725042236528801735181651, 24639597076850046760911809226614419
Offset: 0
a(2) = 4 includes the null graph G1 = [], G2 = [o], G3 = [o o], and G4 = [o-o].
a(3) = 8 includes the null graph G1 = [], G2 = [o], G3 = [o o], G4 = [o-o], G5 = [o o o], G6 = [o-o o], G7 = [o-o-o], and G8 = [triangle with three unlabeled nodes]. - _Petros Hadjicostas_, Apr 10 2020
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
+add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
a:= proc(n) option remember; b(n$2, [])+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
nn = 15; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[g/(1 - x), {x, 0, nn}], x] (* Geoffrey Critzer, Apr 12 2012 *)
A079265
Number of antisymmetric transitive binary relations on n unlabeled points.
Original entry on oeis.org
1, 2, 7, 32, 192, 1490, 15067, 198296, 3398105, 75734592, 2191591226, 82178300654, 3984499220967, 249298391641352, 20089200308020179, 2081351202770089728
Offset: 0
- A. Hess and H. Iyer, Enumeration of mixed linear models and SAS macro for computation of confidence intervals for variance components, presented at Applied Statistics in Agriculture Conference at Kansas State University 2001.
- R. Bayon, N. Lygeros and J.-S. Sereni, New progress in enumeration of mixed models, Applied Mathematics E-Notes, 5 (2005), 60-65.
- R. Bayon, N. Lygeros and J.-S. Sereni, Nouveaux progrès dans l'énumération des modèles mixtes, in Knowledge discovery and discrete mathematics : JIM'2003, INRIA, Université de Metz, France, 2003, pp. 243-246.
- Gunnar Brinkmann and Brendan D. McKay, Counting unlabelled topologies and transitive relations.
- Gunnar Brinkmann and Brendan D. McKay, Counting Unlabelled Topologies and Transitive Relations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.1.
- R. Fraïssé and N. Lygeros, Petits posets: dénombrement, représentabilité par cercles et "compenseurs", C. R. Acad. Sci. Paris, Vol. 313, series I, pp. 417-420, 1991.
- Ann Marie Hess, Mixed Models Site
- G. Pfeiffer, Counting Transitive Relations, preprint, 2004.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
a(10)-a(12) and new description from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(15) from Brinkmann's and McKay's paper by
Vladeta Jovovic, Jan 04 2006
A006898
a(n) = Sum_{k=0..n} C(n,k)*2^(k*(k+1)/2).
Original entry on oeis.org
1, 3, 13, 95, 1337, 38619, 2310533, 283841911, 70927591153, 35812691480115, 36383765777442685, 74185239630793429775, 303119284294591169426729, 2479814853198140771706795531, 40599509058360322571947638063605
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Sum[Binomial[n,k]2^((k(k+1))/2),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Apr 01 2023 *)
-
a(n)=sum(k=0,n,binomial(n,k)*2^(k*(k+1)/2)) \\ Paul D. Hanna, Apr 10 2009
Edited by
N. J. A. Sloane, Apr 12 2009 at the suggestion of Vladeta Jovovic
A135756
a(n) = Sum_{k=0..n} C(n,k) * 2^(k*(k-1)).
Original entry on oeis.org
1, 2, 7, 80, 4381, 1069742, 1080096067, 4405584869660, 72092808533798521, 4723015159635987920282, 1237987266193328694390243007, 1298087832233881093828346620725800
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 80*x^3 + 4381*x^4 + 1069742*x^5 +...
-
Table[Sum[Binomial[n, k]*2^(2*Binomial[k, 2]), {k,0,n}], {n,0,25}] (* G. C. Greubel, Nov 07 2016 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*2^(k*(k-1)))}
A004140
Number of nonempty labeled simple graphs on nodes chosen from an n-set.
Original entry on oeis.org
0, 1, 4, 17, 112, 1449, 40068, 2350601, 286192512, 71213783665, 35883905263780, 36419649682706465, 74221659280476136240, 303193505953871645562969, 2480118046704094643352358500, 40601989176407026666590990422105, 1329877330167226219547875498464516480
Offset: 0
n=2: there are 4 graphs: {o}, {o}, {o o}, {o-o}
......................... 1 .. 2 .. 1 2 .. 1 2
-
a:= n-> add (binomial(n, k)*2^(k*(k-1)/2), k=1..n):
seq (a(n), n=0..20); # Alois P. Heinz, Oct 09 2012
-
nn=20;s=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[ Series[(s-1) Exp[x],{x,0,nn}],x] (* Geoffrey Critzer, Oct 09 2012 *)
-
a(n)=sum(k=1,n,binomial(n,k)*2^((k^2-k)/2))
A079263
Number of constrained mixed models with n factors.
Original entry on oeis.org
2, 6, 22, 101, 576, 4162, 38280, 451411, 6847662, 133841440
Offset: 1
- A. Hess and H. Iyer, Enumeration of mixed linear models and SAS macro for computation of confidence intervals for variance components, presented at Applied Statistics in Agriculture Conference at Kansas State University 2001.
- R. Bayon, N. Lygeros and J.-S. Sereni, New progress in enumeration of mixed models, Applied Mathematics E-Notes, 5 (2005), 60-65.
- R. Bayon, N. Lygeros and J.-S. Sereni, Nouveaux progrès dans l'énumération des modèles mixtes, in Knowledge discovery and discrete mathematics : JIM'2003, INRIA, Université de Metz, France, 2003, pp. 243-246.
- R. Fraïssé and N. Lygeros, Petits posets: dénombrement, représentabilité par cercles et "compenseurs", C. R. Acad. Sci. Paris, Vol. 313, series I, pp. 417-420, 1991.
- Ann Marie Hess, Mixed Models Site
a(10) from Bayon, Lygeros, and Sereni (2005) added by
Sean A. Irvine, Aug 05 2025
A135755
a(n) = Sum_{k=0..n} C(n,k)*3^[k*(k-1)/2].
Original entry on oeis.org
1, 2, 6, 40, 860, 63000, 14714728, 10562062112, 22960880409360, 150300904214651680, 2955814683617734854752, 174481716707875308905153664, 30905247968182392588500030233024
Offset: 0
-
Table[Sum[Binomial[n, k]*3^(Binomial[k, 2]), {k,0,n}], {n,0,10}] (* G. C. Greubel, Nov 07 2016 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*3^(k*(k-1)/2))}
A360604
Triangle read by rows. T(n, k) = 2^binomial(n - k, 2) * binomial(n - 1, k - 1).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 8, 6, 3, 1, 0, 64, 32, 12, 4, 1, 0, 1024, 320, 80, 20, 5, 1, 0, 32768, 6144, 960, 160, 30, 6, 1, 0, 2097152, 229376, 21504, 2240, 280, 42, 7, 1, 0, 268435456, 16777216, 917504, 57344, 4480, 448, 56, 8, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 8, 6, 3, 1;
[5] 0, 64, 32, 12, 4, 1;
[6] 0, 1024, 320, 80, 20, 5, 1;
[7] 0, 32768, 6144, 960, 160, 30, 6, 1;
[8] 0, 2097152, 229376, 21504, 2240, 280, 42, 7, 1;
-
T := (n, k) -> 2^binomial(n - k, 2) * binomial(n-1, k-1):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
A167939
The number of connected subgraphs of the complete graph with n nodes.
Original entry on oeis.org
1, 3, 10, 64, 973, 31743, 2069970, 267270040, 68629753649, 35171000942707, 36024807353574290, 73784587576805254664, 302228602363365451957805, 2475873310144021668263093215, 40564787336902311168400640561098, 1329227697997490307154018925966130320
Offset: 1
Peter Divianszky (divip(AT)aszt.inf.elte.hu), Nov 15 2009
For n = 3, consider the complete graph with nodes A, B and C. a(3) = 10, the 10 connected subgraphs being: A, B, C, AB, AC, BC, AB+AC, AB+BC, AC+BC, AB+AC+BC.
-
import Data.Function (fix)
import Data.List (transpose)
a :: [Integer]
a = scanl1 (+) . (!! 1) . transpose . fix $ map ((1:) . zipWith (*) (scanl1 (*) l) . zipWith poly (scanl1 (+) l)) . scanl (flip (:)) [] . zipWith (zipWith (*)) pascal where l = iterate (2*) 1
-- the Pascal triangle
pascal :: [[Integer]]
pascal = iterate (\l -> zipWith (+) (0: l) l) (1: repeat 0)
-- evaluate a polynomial at a given value
poly :: (Num a) => a -> [a] -> a
poly t = foldr (\e i -> e + t*i) 0
-
m:=35;
f:= func< x | (&+[2^Binomial(j,2)*x^j/Factorial(j): j in [0..m+2]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( Exp(x)*Log(f(x)) ))); // G. C. Greubel, Sep 08 2023
-
nn = 25;
g[z_]:= Sum[2^Binomial[n, 2] z^n/n!, {n, 0, nn}];
Drop[CoefficientList[Series[Exp[z]*Log[g[z]], {z,0,nn}], z]*Range[0, nn]!, 1] (* Geoffrey Critzer, Nov 23 2016 *)
-
m=35
def f(x): return sum(2^binomial(j,2)*x^j/factorial(j) for j in range(m+3))
def A167939_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(x)*log(f(x)) ).egf_to_ogf().list()
a=A167939_list(m); a[1:] # G. C. Greubel, Sep 08 2023
Showing 1-9 of 9 results.
Comments