cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006897 a(n) is the number of hierarchical linear models on n unlabeled factors allowing 2-way interactions (but no higher order interactions); or the number of unlabeled simple graphs with <= n nodes.

Original entry on oeis.org

1, 2, 4, 8, 19, 53, 209, 1253, 13599, 288267, 12293435, 1031291299, 166122463891, 50668153831843, 29104823811067331, 31455590793615376099, 64032471295321173271027, 245999896624828253856990803, 1787823725042236528801735181651, 24639597076850046760911809226614419
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of isolated points over all simple unlabeled graphs with (n+1) nodes. - Geoffrey Critzer, Apr 14 2012

Examples

			a(2) = 4 includes the null graph G1 = [], G2 = [o], G3 = [o o], and G4 = [o-o].
a(3) = 8 includes the null graph G1 = [], G2 = [o], G3 = [o o], G4 = [o-o], G5 = [o o o], G6 = [o-o o], G7 = [o-o-o], and G8 = [triangle with three unlabeled nodes]. - _Petros Hadjicostas_, Apr 10 2020
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A000088.
Cf. A006896 (labeled case).

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= proc(n) option remember; b(n$2, [])+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    nn = 15; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[g/(1 - x), {x, 0, nn}], x]  (* Geoffrey Critzer, Apr 12 2012 *)

Formula

O.g.f.: A(x)/(1-x), where A(x) is o.g.f. for A000088. - Geoffrey Critzer, Apr 12 2012
a(n) = Sum_{k=0..n} A000088(k). - Petros Hadjicostas, Apr 19 2020

Extensions

Name edited by Petros Hadjicostas, Apr 08 2020

A079265 Number of antisymmetric transitive binary relations on n unlabeled points.

Original entry on oeis.org

1, 2, 7, 32, 192, 1490, 15067, 198296, 3398105, 75734592, 2191591226, 82178300654, 3984499220967, 249298391641352, 20089200308020179, 2081351202770089728
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

Also, number of unconstrained mixed models with n factors.

References

  • A. Hess and H. Iyer, Enumeration of mixed linear models and SAS macro for computation of confidence intervals for variance components, presented at Applied Statistics in Agriculture Conference at Kansas State University 2001.

Crossrefs

Cf. A000112 (partial orders), A091073 (transitive relations), A001930 (quasi-orders), A085628 (labeled antisymmetric transitive relations).

Extensions

a(10)-a(12) and new description from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(15) from Brinkmann's and McKay's paper by Vladeta Jovovic, Jan 04 2006

A006898 a(n) = Sum_{k=0..n} C(n,k)*2^(k*(k+1)/2).

Original entry on oeis.org

1, 3, 13, 95, 1337, 38619, 2310533, 283841911, 70927591153, 35812691480115, 36383765777442685, 74185239630793429775, 303119284294591169426729, 2479814853198140771706795531, 40599509058360322571947638063605
Offset: 0

Views

Author

Keywords

Comments

First differences of A006896.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]2^((k(k+1))/2),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Apr 01 2023 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*2^(k*(k+1)/2)) \\ Paul D. Hanna, Apr 10 2009

Formula

a(n) ~ 2^(n*(n+1)/2). - Vaclav Kotesovec, Nov 27 2017

Extensions

Formula and more terms from Vladeta Jovovic, Sep 20 2003
Edited by N. J. A. Sloane, Apr 12 2009 at the suggestion of Vladeta Jovovic

A135756 a(n) = Sum_{k=0..n} C(n,k) * 2^(k*(k-1)).

Original entry on oeis.org

1, 2, 7, 80, 4381, 1069742, 1080096067, 4405584869660, 72092808533798521, 4723015159635987920282, 1237987266193328694390243007, 1298087832233881093828346620725800
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2007

Keywords

Comments

The square root of the g.f. of this sequence is an integer series (cf. A261594).

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 80*x^3 + 4381*x^4 + 1069742*x^5 +...
		

Crossrefs

Cf. A261594; variants: A006896, A135755.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*2^(2*Binomial[k, 2]), {k,0,n}], {n,0,25}] (* G. C. Greubel, Nov 07 2016 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*2^(k*(k-1)))}

Formula

a(n) ~ 2^(n*(n-1)). - Vaclav Kotesovec, Nov 27 2017

A004140 Number of nonempty labeled simple graphs on nodes chosen from an n-set.

Original entry on oeis.org

0, 1, 4, 17, 112, 1449, 40068, 2350601, 286192512, 71213783665, 35883905263780, 36419649682706465, 74221659280476136240, 303193505953871645562969, 2480118046704094643352358500, 40601989176407026666590990422105, 1329877330167226219547875498464516480
Offset: 0

Views

Author

Keywords

Comments

We are given n labeled points, we choose k (1 <= k <= n) of them and construct a simple (but not necessarily connected) graph on these k nodes in 2^C(k,2) ways.
a(n) is the number of (non-null) subgraphs of the complete graph with n vertices. - Maharshee K. Shah, Sep 08 2024

Examples

			n=2: there are 4 graphs: {o}, {o}, {o o}, {o-o}
......................... 1 .. 2 .. 1 2 .. 1 2
		

Crossrefs

Cf. A006896.

Programs

  • Maple
    a:= n-> add (binomial(n, k)*2^(k*(k-1)/2), k=1..n):
    seq (a(n), n=0..20);  # Alois P. Heinz, Oct 09 2012
  • Mathematica
    nn=20;s=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[ Series[(s-1) Exp[x],{x,0,nn}],x]  (* Geoffrey Critzer, Oct 09 2012 *)
  • PARI
    a(n)=sum(k=1,n,binomial(n,k)*2^((k^2-k)/2))

Formula

a(n) = Sum_{k=1..n} binomial(n, k)*2^(k(k-1)/2).
E.g.f.: exp(x)*(A(x)-1), where A(x) is e.g.f. for A006125. - Geoffrey Critzer, Oct 09 2012
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, Nov 15 2014

A079263 Number of constrained mixed models with n factors.

Original entry on oeis.org

2, 6, 22, 101, 576, 4162, 38280, 451411, 6847662, 133841440
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

References

  • A. Hess and H. Iyer, Enumeration of mixed linear models and SAS macro for computation of confidence intervals for variance components, presented at Applied Statistics in Agriculture Conference at Kansas State University 2001.

Crossrefs

Extensions

a(10) from Bayon, Lygeros, and Sereni (2005) added by Sean A. Irvine, Aug 05 2025

A135755 a(n) = Sum_{k=0..n} C(n,k)*3^[k*(k-1)/2].

Original entry on oeis.org

1, 2, 6, 40, 860, 63000, 14714728, 10562062112, 22960880409360, 150300904214651680, 2955814683617734854752, 174481716707875308905153664, 30905247968182392588500030233024
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2007

Keywords

Crossrefs

Cf. variants: A006896, A135756.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*3^(Binomial[k, 2]), {k,0,n}], {n,0,10}] (* G. C. Greubel, Nov 07 2016 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*3^(k*(k-1)/2))}

Formula

a(n) ~ 3^(n*(n-1)/2). - Vaclav Kotesovec, Nov 27 2017

A360604 Triangle read by rows. T(n, k) = 2^binomial(n - k, 2) * binomial(n - 1, k - 1).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 8, 6, 3, 1, 0, 64, 32, 12, 4, 1, 0, 1024, 320, 80, 20, 5, 1, 0, 32768, 6144, 960, 160, 30, 6, 1, 0, 2097152, 229376, 21504, 2240, 280, 42, 7, 1, 0, 268435456, 16777216, 917504, 57344, 4480, 448, 56, 8, 1
Offset: 0

Views

Author

Peter Luschny, Feb 23 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,       1;
[2] 0,       1,      1;
[3] 0,       2,      2,     1;
[4] 0,       8,      6,     3,    1;
[5] 0,      64,     32,    12,    4,   1;
[6] 0,    1024,    320,    80,   20,   5,  1;
[7] 0,   32768,   6144,   960,  160,  30,  6, 1;
[8] 0, 2097152, 229376, 21504, 2240, 280, 42, 7, 1;
		

Crossrefs

Cf. A006125 (column 1), A002378 (T(n+2,n)), A130809 (T(n+3,n)), A006896 (row sums).

Programs

  • Maple
    T := (n, k) -> 2^binomial(n - k, 2) * binomial(n-1, k-1):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

A167939 The number of connected subgraphs of the complete graph with n nodes.

Original entry on oeis.org

1, 3, 10, 64, 973, 31743, 2069970, 267270040, 68629753649, 35171000942707, 36024807353574290, 73784587576805254664, 302228602363365451957805, 2475873310144021668263093215, 40564787336902311168400640561098, 1329227697997490307154018925966130320
Offset: 1

Views

Author

Peter Divianszky (divip(AT)aszt.inf.elte.hu), Nov 15 2009

Keywords

Comments

The problem originated from Attila Szabss.

Examples

			For n = 3, consider the complete graph with nodes A, B and C. a(3) = 10, the 10 connected subgraphs being: A, B, C, AB, AC, BC, AB+AC, AB+BC, AC+BC, AB+AC+BC.
		

Crossrefs

Programs

  • Haskell
    import Data.Function (fix)
    import Data.List (transpose)
    a :: [Integer]
    a = scanl1 (+) . (!! 1) . transpose . fix $ map ((1:) . zipWith (*) (scanl1 (*) l) . zipWith poly (scanl1 (+) l)) . scanl (flip (:)) [] . zipWith (zipWith (*)) pascal where l = iterate (2*) 1
    -- the Pascal triangle
    pascal :: [[Integer]]
    pascal = iterate (\l -> zipWith (+) (0: l) l) (1: repeat 0)
    -- evaluate a polynomial at a given value
    poly :: (Num a) => a -> [a] -> a
    poly t = foldr (\e i -> e + t*i) 0
    
  • Magma
    m:=35;
    f:= func< x | (&+[2^Binomial(j,2)*x^j/Factorial(j): j in [0..m+2]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( Exp(x)*Log(f(x)) ))); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    nn = 25;
    g[z_]:= Sum[2^Binomial[n, 2] z^n/n!, {n, 0, nn}];
    Drop[CoefficientList[Series[Exp[z]*Log[g[z]], {z,0,nn}], z]*Range[0, nn]!, 1] (* Geoffrey Critzer, Nov 23 2016 *)
  • SageMath
    m=35
    def f(x): return sum(2^binomial(j,2)*x^j/factorial(j) for j in range(m+3))
    def A167939_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(x)*log(f(x)) ).egf_to_ogf().list()
    a=A167939_list(m); a[1:] # G. C. Greubel, Sep 08 2023

Formula

E.g.f.: exp(x)*log(A(x)) where A(x) is the e.g.f. for A006125. - Geoffrey Critzer, Nov 23 2016
Showing 1-9 of 9 results.