cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006897 a(n) is the number of hierarchical linear models on n unlabeled factors allowing 2-way interactions (but no higher order interactions); or the number of unlabeled simple graphs with <= n nodes.

Original entry on oeis.org

1, 2, 4, 8, 19, 53, 209, 1253, 13599, 288267, 12293435, 1031291299, 166122463891, 50668153831843, 29104823811067331, 31455590793615376099, 64032471295321173271027, 245999896624828253856990803, 1787823725042236528801735181651, 24639597076850046760911809226614419
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of isolated points over all simple unlabeled graphs with (n+1) nodes. - Geoffrey Critzer, Apr 14 2012

Examples

			a(2) = 4 includes the null graph G1 = [], G2 = [o], G3 = [o o], and G4 = [o-o].
a(3) = 8 includes the null graph G1 = [], G2 = [o], G3 = [o o], G4 = [o-o], G5 = [o o o], G6 = [o-o o], G7 = [o-o-o], and G8 = [triangle with three unlabeled nodes]. - _Petros Hadjicostas_, Apr 10 2020
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A000088.
Cf. A006896 (labeled case).

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= proc(n) option remember; b(n$2, [])+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    nn = 15; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[g/(1 - x), {x, 0, nn}], x]  (* Geoffrey Critzer, Apr 12 2012 *)

Formula

O.g.f.: A(x)/(1-x), where A(x) is o.g.f. for A000088. - Geoffrey Critzer, Apr 12 2012
a(n) = Sum_{k=0..n} A000088(k). - Petros Hadjicostas, Apr 19 2020

Extensions

Name edited by Petros Hadjicostas, Apr 08 2020