A006897 a(n) is the number of hierarchical linear models on n unlabeled factors allowing 2-way interactions (but no higher order interactions); or the number of unlabeled simple graphs with <= n nodes.
1, 2, 4, 8, 19, 53, 209, 1253, 13599, 288267, 12293435, 1031291299, 166122463891, 50668153831843, 29104823811067331, 31455590793615376099, 64032471295321173271027, 245999896624828253856990803, 1787823725042236528801735181651, 24639597076850046760911809226614419
Offset: 0
Examples
a(2) = 4 includes the null graph G1 = [], G2 = [o], G3 = [o o], and G4 = [o-o]. a(3) = 8 includes the null graph G1 = [], G2 = [o], G3 = [o o], G4 = [o-o], G5 = [o o o], G6 = [o-o o], G7 = [o-o-o], and G8 = [triangle with three unlabeled nodes]. - _Petros Hadjicostas_, Apr 10 2020
References
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..87
- Max A. Alekseyev and Allan Bickle, Forbidden Subgraphs of Single Graphs, (2024). See p. 13.
Programs
-
Maple
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2) +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])), add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)) end: a:= proc(n) option remember; b(n$2, [])+`if`(n>0, a(n-1), 0) end: seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
Mathematica
nn = 15; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[g/(1 - x), {x, 0, nn}], x] (* Geoffrey Critzer, Apr 12 2012 *)
Formula
O.g.f.: A(x)/(1-x), where A(x) is o.g.f. for A000088. - Geoffrey Critzer, Apr 12 2012
a(n) = Sum_{k=0..n} A000088(k). - Petros Hadjicostas, Apr 19 2020
Extensions
Name edited by Petros Hadjicostas, Apr 08 2020
Comments