cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006972 Lucas-Carmichael numbers: squarefree composite numbers k such that p | k => p+1 | k+1.

Original entry on oeis.org

399, 935, 2015, 2915, 4991, 5719, 7055, 8855, 12719, 18095, 20705, 20999, 22847, 29315, 31535, 46079, 51359, 60059, 63503, 67199, 73535, 76751, 80189, 81719, 88559, 90287, 104663, 117215, 120581, 147455, 152279, 155819, 162687, 191807, 194327, 196559, 214199
Offset: 1

Views

Author

Keywords

Comments

Wright proves that this sequence is infinite (Main Theorem 2). - Charles R Greathouse IV, Nov 03 2015
Conjecture: if k = p*q*r, p = a*d - 1, q = b*d - 1, r = c*d - 1 are distinct odd primes, with d = gcd(p + 1, q + 1, r + 1) and a*b*c*d divides k + 1, then k is a Lucas-Carmichael number. - Davide Rotondo, Dec 23 2020
A composite k is a Lucas-Carmichael number if and only if k | A322702(k+1). - Thomas Ordowski, May 06 2021

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersection of A024556 and A056729.
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (terms having 3, 4, 5, 6, 7 and 8 factors).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 3, a(n-1)) while isprime(k) or not issqrfree(k)
           or add(irem(k+1,i+1), i=factorset(k))>0 do od; k
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 05 2018
  • Mathematica
    Select[ Range[ 2, 10^6 ], !PrimeQ[ # ] && Union[ Transpose[ FactorInteger[ # ] ][ [ 2 ] ] ] == {1} && Union[ Mod[ # + 1, Transpose[ FactorInteger[ # ] ][ [ 1 ] ] + 1 ] ] == {0} & ]
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if((n+1)%(f[i,1]+1) || f[i,2]>1, return(0)));#f[,1]>1 \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=min(sqrtint(B+1)-1, sqrtnint(B\m, k))); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); f(1, 1, 3, k);
    upto(n) = my(list=List()); for(k=3, oo, if(vecprod(primes(k+1))\2 > n, break); list=concat(list, lucas_carmichael(1, n, k))); vecsort(Vec(list)); \\ Daniel Suteu, Dec 01 2023